towards a bijective enumeration of spanning trees of the
play

Towards a bijective enumeration of spanning trees of the hypercube - PDF document

Towards a bijective enumeration of spanning trees of the hypercube Jeremy L. Martin and Victor Reiner University of Minnesota Full paper Factorization of some weighted spanning tree enumerators at http://math.umn.edu/


  1. Towards a bijective enumeration of spanning trees of the hypercube Jeremy L. Martin and Victor Reiner University of Minnesota Full paper “Factorization of some weighted spanning tree enumerators” at http://math.umn.edu/ ∼ martin/math/pubs.html

  2. ✞ ☞✌ ✝ ✝✞ ✖✗ ✟ ✟✠ ✠ ✡ ✡☛ ☛ ☞ ✌ ☎✆ ✍ ✍✎ ✎ ✏ ✏✑ ✑ ✒ ✒✓ ✓ ✔ ✔✕ ✆ ☎ ✖ � ✛ ✚✛ ✚ ✙ ✘✙ ✘ ✗ � � � � ✄ � ✁ ✁ ✁ ✁ ✁ ✁ ✂ ✂ ✂ ✂✄ ✕ The hypercube Q n V ( Q n ) = { v = v 1 v 2 . . . v n : v i ∈ { 0 , 1 }} E ( Q n ) = { vw : v i = w i for all but one i } ❀✢❀✢❀ ❁✢❁✢❁ ❁✢❁✢❁ ❀✢❀✢❀ ❁✢❁✢❁ ❀✢❀✢❀ ❀✢❀✢❀ ❁✢❁✢❁ ✺✢✺ ✻✢✻ ✹✢✹ ✸✢✸ ✺✢✺ ✸✢✸ ✻✢✻ ✹✢✹ ✺✢✺ ✻✢✻ ✸✢✸ ✹✢✹ ✻✢✻ ✺✢✺ ✸✢✸ ✹✢✹ ✰✢✰ ✱✢✱ ✮✢✮✢✮ ✯✢✯✢✯ ✬✢✬ ✭✢✭ ✰✢✰ ✱✢✱ ✯✢✯✢✯ ✮✢✮✢✮ ✬✢✬ ✭✢✭ ✱✢✱ ✰✢✰ ✯✢✯✢✯ ✮✢✮✢✮ ✭✢✭ ✬✢✬ ✰✢✰ ✱✢✱ ✮✢✮✢✮ ✯✢✯✢✯ ✭✢✭ ✬✢✬ ✶✢✶ ✶✢✶ ✶✢✶ ✴✢✴ ✵✢✵ ✳✢✳ ✲✢✲ ✪✢✪ ✫✢✫ ✶✢✶ ✷✢✷ ✴✢✴ ✵✢✵ ✳✢✳ ✲✢✲ ✫✢✫ ✪✢✪ ✷✢✷ ✴✢✴ ✲✢✲ ✪✢✪ ✵✢✵ ✳✢✳ ✫✢✫ ✷✢✷ ✵✢✵ ✴✢✴ ✳✢✳ ✲✢✲ ✫✢✫ ✪✢✪ ✷✢✷ ✦✢✦✢✦ ★✢★ ✦✢✦✢✦ ★✢★ ✦✢✦✢✦ ★✢★ ✤✢✤ ✥✢✥ ✧✢✧✢✧ ✦✢✦✢✦ ✩✢✩ ★✢★ ✤✢✤ ✥✢✥ ✧✢✧✢✧ ✩✢✩ ✤✢✤ ✥✢✥ ✧✢✧✢✧ ✩✢✩ ✤✢✤ ✥✢✥ ✧✢✧✢✧ ✩✢✩ ✾✢✾ ✾✢✾ ✾✢✾ ✼✢✼ ✽✢✽ ✿✢✿ ✾✢✾ ✼✢✼ ✽✢✽ ✿✢✿ ✼✢✼ ✽✢✽ ✿✢✿ ✽✢✽ ✼✢✼ ✿✢✿ ✜✢✜✢✜ ✣✢✣✢✣ ✣✢✣✢✣ ✜✢✜✢✜ ✜✢✜✢✜ ✣✢✣✢✣ ✜✢✜✢✜ ✣✢✣✢✣

  3. Spanning trees of Q n Tree( G ) = { spanning trees of a graph G } τ ( G ) = | Tree( G ) | [ n ] = { 1 , 2 , . . . , n } Theorem 0 (Stanley, Enumerative Combinatorics, vol. 2, p. 62) n � � k ( n 2 2 n − n − 1 k ) . τ ( Q n ) = 2 | S | = k =1 S ⊂ [ n ] | S |≥ 2 E.g., τ ( Q 3 ) = 2 |{ 1 , 2 }| · 2 |{ 1 , 3 }| · 2 |{ 2 , 3 }| · 2 |{ 1 , 2 , 3 }| = 4 · 4 · 4 · 6 = 384. Bijective proof??

  4. The model: K n and the Pr¨ ufer code K n = complete graph on n vertices τ ( K n ) = n n − 2 Cayley’s Formula: bijection → [ n ] n − 2 Tree( K n ) − − − − − Pr¨ ufer code: 1 2 3 ⑦ ⑦ ⑦ 4 5 6 Pr¨ ufer code ← → ⑦ ⑦ ⑦ 4255458 7 8 9 ⑦ ⑦ ⑦ • deg T ( i ) = 1 + number of i ’s in Pr¨ ufer code of T Cayley-Pr¨ ufer Formula: � x deg T ( i ) · · · x deg T ( n ) x 1 · · · x n ( x 1 + · · · + x n ) n − 2 = 1 n T ∈ Tree( K n )

  5. Weighted enumeration and bijections Suppose that you know Cayley’s formula τ ( K n ) = n n − 2 . . . • . . . and can prove it using the Matrix-Tree Theorem. . . . . . but are looking for a bijective proof. • Knowing the Cayley-Pr¨ ufer Formula � x deg T ( i ) · · · x deg T ( n ) x 1 · · · x n ( x 1 + · · · + x n ) n − 2 = 1 n T ∈ Tree( K n ) might be an important clue, enabling you to reproduce the Pr¨ ufer code (or a similar bijection). • Goal: Do the same thing for Q n by finding a weighted analogue of the formula � τ ( Q n ) = 2 | S | S ⊂ [ n ] | S |≥ 2

  6. Weighted enumeration of spanning trees of Q n • Assign a monomial weight wt( e ) to each edge e ∈ Q n , � define wt( T ) = wt( e ) for T ∈ Tree( Q n ), e ∈ T and consider the generating function � wt( T ) . T ∈ Tree( Q n ) First attempt: Keep track of vertex degrees (` a la Pr¨ ufer). Weight each edge vw ∈ E ( Q n ) by wt( vw ) = y v y w so that � y deg T ( v ) wt( T ) = v v ∈ V ( Q n ) • Unfortunately, this does not factor nicely. E.g., for n = 3, it is x 000 · x 001 · · · x 111 · (some irreducible degree-6 nightmare) .

  7. ☛ ✂ ✟ ✞ ✝✞ ✝ ✆ ☎✆ ☎ ✄ ✂✄ ✁ ✠ �✁ � ✡ ✡☛ ☞ ☞✌ ✌ ✍ ✍✎ ✎ ✟✠ Directions of edges • Weight each edge vw by q i , where i = dir( vw ) is the unique index for which v i � = w i . So n � wt( T ) = q dir( T ) = q |{ edges of T in direction i }| i i =1 (0,1,1) (1,1,1) (0,0,1) (1,0,1) (0,1,0) (1,1,0) (0,0,0) (1,0,0) Theorem 1 � � � � � 2 2 n − n − 1 q 1 · · · q n q dir( T ) = q i T ∈ Tree( Q n ) S ⊂ [ n ] i ∈ S | S | ≥ 2

  8. ✝ ✟ ✆ ☎✆ ☎ ✄ ✂✄ ✂ ✁ �✁ � ✟✠ ✝✞ ✠ ✡ ✡☛ ☛ ☞ ☞✌ ✌ ✍ ✍✎ ✎ ✞ Decoupled vertex degrees • For each edge e = vw not in direction i , either v i = w i = 0 or v i = w i = 1 . Weight e by x i or x − 1 accordingly. E.g., for e = { 0 10 , 1 10 } , i wt( e ) = q dir( e ) x dd( e ) = q 1 x 2 x − 1 3 . • Equivalently, record which Q n − 1 ⊂ Q n the edge e belongs to. (0,1,1) (1,1,1) (0,0,1) (1,0,1) (0,1,0) (1,1,0) (0,0,0) (1,0,0)

  9. The main result Theorem 2 �� � � � q dir( T ) x dd( T ) q i ( x − 1 = q 1 . . . q n + x i ) i i ∈ S T ∈ Tree( Q n ) S ⊂ [ n ] � �� � | S | ≥ 2 f S � � q dir( T ) = x dd( T ) = x dd( e ) . where q dir( e ) , e ∈ T e ∈ T Compare Theorem 1: � � � � � 2 2 n − n − 1 q 1 · · · q n q dir( T ) = q i i ∈ S T ∈ Tree( Q n ) S ⊂ [ n ] | S | ≥ 2 and Theorem 0: � τ ( Q n ) = 2 | S | S ⊂ [ n ] | S |≥ 2

  10. Sketch of the proof Weighted Matrix-Tree Theorem Let L = ( L vw ) v,w ∈ V ( G ) be the weighted Laplacian:   0 v � = w and vw �∈ E ( G )      − wt( vw ) vw ∈ E ( G ) L vw =   �  wt( e ) v = w    e ∋ v Then � T ∈ Tree( G ) wt( T ) = det ˆ L , where ˆ L is obtained by deleting the v th row and v th column of L . Identification of Factors Lemma (Krattenthaler) f | det ˆ ˆ L ⇐ ⇒ L has a nullvector in Q [ q, x ] / ( f ) . • Use a computer algebra package (e.g., Macaulay) to compute “witness” nullvectors for factors f = f S • Experimentally, the witnesses have a nice form, reducing the proof to calculation • Same method can be used for threshold graphs (specializing a result of Remmel and Williamson) and products of K n ’s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend