an introduction to enumeration schemes
play

An Introduction to Enumeration Schemes Lara Pudwell Valparaiso - PowerPoint PPT Presentation

Pattern-Avoiding Permutations Enumeration Schemes Summary An Introduction to Enumeration Schemes Lara Pudwell Valparaiso University Lara.Pudwell@valpo.edu AWM Workshop Washington, DC January 8, 2009 Pattern-Avoiding Permutations


  1. Pattern-Avoiding Permutations Enumeration Schemes Summary An Introduction to Enumeration Schemes Lara Pudwell Valparaiso University Lara.Pudwell@valpo.edu AWM Workshop Washington, DC January 8, 2009

  2. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is

  3. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is 1 •••• .

  4. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is 1 •• 2 • .

  5. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is 1 •• 23 .

  6. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is 14 • 23 .

  7. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Reduction Given a string of numbers p = p 1 · · · p n , the reduction of p is the string obtained by replacing the i th smallest number of p with i . For example, the reduction of 26745 is 14523 .

  8. Pattern-Avoiding Permutations Enumeration Schemes Summary Definitions Pattern Avoidance in Permutations Given p ∈ S n and q ∈ S m , we say p contains q if there are 1 ≤ i 1 < · · · < i m ≤ n such that p i 1 · · · p i m reduces to q . Otherwise, p avoids q . p = 21354 contains 132. (since 21354 reduces to 132.) p = 21354 avoids 321. (since p has no decreasing subsequence of length 3.)

  9. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Two Questions Easy: Given p ∈ S n , what patterns does p contain? Hard: Given q ∈ S m , Let S n ( q ) = { p ∈ S n | p avoids q } . Find an expression for | S n ( q ) | .

  10. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = 0 n > 0

  11. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = | S n ( 12 ) | = | S n ( 21 ) | = 1 , n ≥ 0 0 n > 0

  12. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = | S n ( 12 ) | = | S n ( 21 ) | = 1 , n ≥ 0 0 n > 0 Graph of p ∈ S n ( 132 )

  13. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = | S n ( 12 ) | = | S n ( 21 ) | = 1 , n ≥ 0 0 n > 0 Graph of p ∈ S n ( 132 )

  14. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = | S n ( 12 ) | = | S n ( 21 ) | = 1 , n ≥ 0 0 n > 0 Graph of p ∈ S n ( 132 ) So, | S n ( 132 ) | = � n i = 1 | S i − 1 ( 132 ) | · | S n − i ( 132 ) |

  15. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of length 1, 2, and 3 � 1 n = 0 | S n ( 1 ) | = | S n ( 12 ) | = | S n ( 21 ) | = 1 , n ≥ 0 0 n > 0 Graph of p ∈ S n ( 132 ) � 2 n � So, | S n ( 132 ) | = � n n i = 1 | S i − 1 ( 132 ) | · | S n − i ( 132 ) | = n + 1 = C n In fact, | S n ( q ) | = C n if q is any permutation of length 3.

  16. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of Length 4 There are 24 patterns of length 4. Using several clever bijections, we can narrow our work to 3 cases: S n ( 1342 ) , S n ( 1234 ) , and S n ( 1324 ) .

  17. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results Patterns of Length 4 There are 24 patterns of length 4. Using several clever bijections, we can narrow our work to 3 cases: S n ( 1342 ) , S n ( 1234 ) , and S n ( 1324 ) . 1 2 3 4 5 6 7 8 ∼ 8 n | S n ( 1342 ) | 1 2 6 23 103 512 2740 15485 ∼ 9 n | S n ( 1234 ) | 1 2 6 23 103 513 2761 15767 ∼ 9 . 3 n | S n ( 1324 ) | 1 2 6 23 103 513 2762 15793

  18. Pattern-Avoiding Permutations Enumeration Schemes Summary Counting Results For Permutations Most techniques studying | S n ( q ) | finds formulas for a specific q . 1998: Zeilberger’s prefix enumeration schemes , i.e. a system of recurrences to count | S n ( q ) | . 2005: Vatter’s modified schemes automate the enumeration of | S n ( q ) | for even more patterns q .

  19. Pattern-Avoiding Permutations Enumeration Schemes Summary Divide Refinement Notation Goal: Divide S n ( q ) into subsets. � � � π avoids q � � � S n q ; p 1 · · · p l := π ∈ S n � π has prefix p 1 · · · p l and   π avoids q � � � q ; p 1 · · · p l  �  S n :=  π ∈ S n π has prefix p 1 · · · p l � i 1 · · · i l � π = i 1 · · · i l π l + 1 · · · π n �  If p 1 · · · p l − 1 reduces to p ∗ 1 · · · p ∗ l − 1 , then p = p 1 · · · p l is called a refinement if p ∗ . e.g p = 2413 is a refinement of p ∗ = 231.

  20. � � Pattern-Avoiding Permutations Enumeration Schemes Summary Divide Refinement Example For any pattern q , S n ( q ) = S n ( q ; 1 ) = S n ( q ; 12 ) ∪ S n ( q ; 21 ) . or graphically: ∅ 1 � � � � � � � � � � � � � � � � � � � 12 21

  21. Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Reversibly Deletable Positions Reversibly Deletable Positions Given a pattern q and a prefix p , position r is reversibly deletable if Deleting p r from π ∈ S n ( q ; p 1 · · · p l ) produces a q -avoiding permutation of length n − 1, and Inserting p r into π ∈ S n − 1 ( q ; p 1 · · · p r − 1 p r + 1 · · · p l ) produces a q avoiding permutation of length n . In other words, deleting and re-inserting p r gives a bijection between S n ( q ; p 1 · · · p l ) and S n − 1 ( q ; p 1 · · · p r − 1 p r + 1 · · · p l ) , and | S n ( q ; p 1 · · · p l ) | = | S n − 1 ( q ; p 1 · · · p r − 1 p r + 1 · · · p l ) | .

  22. � � Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Reversibly Deletable Example Graphically: ∅ 1 � � � � � � � � � � � � � � � � � � � 12 21

  23. � � � Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Reversibly Deletable Example Graphically: ∅ 1 � d 1 � � � � � � � � � � � � � � � � � � 12 21

  24. � � � Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Gap Vectors Gap vectors give a condition for which choices of i 1 , . . . , i l yield � � �� q ; p 1 · · · p r · · · p l � � � S n � = 0 . � � i 1 · · · i r · · · i l Graphically: ∅ 1 � d 1 � � � � � � � � � � � � � � � � � � 12 21

  25. � � � Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Gap Vectors Gap vectors give a condition for which choices of i 1 , . . . , i l yield � � �� q ; p 1 · · · p r · · · p l � � � S n � = 0 . � � i 1 · · · i r · · · i l Graphically: ∅ 1 � d 1 � � � � � � � � � � � � � � � � � � 12 21 ≥ ( 0 , 1 , 0 )

  26. � � � � Pattern-Avoiding Permutations Enumeration Schemes Summary Conquer Gap Vectors Gap vectors give a condition for which choices of i 1 , . . . , i l yield � � �� q ; p 1 · · · p r · · · p l � � � S n � = 0 . � � i 1 · · · i r · · · i l Graphically: ∅ 1 d 2 � d 1 � � � � � � � � � � � � � � � � � � 12 21 ≥ ( 0 , 1 , 0 )

  27. Pattern-Avoiding Permutations Enumeration Schemes Summary Enumeration Schemes Enumeration Scheme Definition An enumeration scheme is a set of triples [ p i , R i , G i ] such that for each triple p i is a reduced prefix of length n R i a subset of { 1 , . . . , n } G i is a set of vectors of length n + 1 and either R i is non-empty or all refinements of p i are also in the scheme.

  28. Pattern-Avoiding Permutations Enumeration Schemes Summary Enumeration Schemes Enumeration Scheme Definition An enumeration scheme is a set of triples [ p i , R i , G i ] such that for each triple p i is a reduced prefix of length n (prefix) R i a subset of { 1 , . . . , n } (reversibly deletable positions) G i is a set of vectors of length n + 1 (gap vectors) and either R i is non-empty or all refinements of p i are also in the scheme.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend