bias stress instability in gan field effect transistors
play

Bias-Stress Instability in GaN Field-Effect Transistors Jess A. del - PowerPoint PPT Presentation

Bias-Stress Instability in GaN Field-Effect Transistors Jess A. del Alamo and Alex Guo Microsystems Technology Laboratories Massachusetts Institute of Technology MRS Spring Meeting Phoenix, AZ, April 2-6, 2018 Acknowledgements: S.


  1. Bias-Stress Instability in GaN Field-Effect Transistors Jesús A. del Alamo and Alex Guo Microsystems Technology Laboratories Massachusetts Institute of Technology MRS Spring Meeting Phoenix, AZ, April 2-6, 2018 Acknowledgements: • S. Warnock (MIT Lincoln Lab.), J. Franco (IMEC) • Sponsors: MIT-MTL GaN Energy Initiative, NDSEG Fellowship

  2. Application space for future power electronics Important role for GaN power electronics in future 2

  3. Favored structure: GaN MIS-HEMT • MIS-HEMT: Metal-Insulator-Semiconductor High Electron Mobility Transistor 2DEG • High-mobility 2DEG at AlGaN/GaN interface • Dielectric to suppress gate leakage current and increase gate swing • On Si for low cost 3

  4. Main concern with GaN MIS-HEMTs: reliability and stability • Si substrate  defects in GaN • Multiple interfaces, many trapping sites • Uncertain electric field distribution across gate stack 4

  5. Bias-Temperature Instability (BTI) Device stability during operation: key concern, particularly V T Al 2 O 3 /AlGaN/GaN SiN/AlGaN/GaN HfO 2 /AlGaN/GaN Lagger, IEDM 2012 Zhang, SST 2014 Winzer, PSSa 2016 5

  6. BTI in GaN MOSFETs Simpler than MIS-HEMTs: single GaN/oxide interface • Industrial prototype devices Guo, IRPS 2015 Guo, IRPS 2016 • Gate dielectric: SiO 2 /Al 2 O 3 (EOT=40 nm) Guo, TED 2017 6

  7. Experimental methodology Constant-V GS , stress-interrupt experiments at RT: Guo, TED 2017 1. Device initialization through thermal detrapping step Minor impact: Δ V T < 20 mV, Δ S < 30 mV/dec 2. Stress and characterization: measure V T , peak g m , S at V DS =0.1 V After 50 characterization runs: Δ V T < 10 mV, Δ g m < 0.02 mS/mm, Δ S < 15 mV/dec 3. Recovery phase with terminals grounded and periodic characterization 4. Final thermal detrapping 7

  8. Threshold voltage evolution • PBTI: V GS,stress >0  Δ V T >0 Guo, TED 2017 • NBTI: V GS,stress <0  Δ V T <0 • | Δ V T | increases with stress voltage and time • Fully recoverable  no defect generation 8

  9. Transconductance evolution • PBTI: V GS,stress >0  g m,max ↓ Guo, TED 2017 • NBTI: V GS,stress <0  g m,max ↑ • | Δ g m | increases with stress voltage and time • Fully recoverable  no defect generation 9

  10. Subthreshold swing evolution Guo, TED 2017 • PBTI: V GS,stress >0  S unchanged • NBTI: V GS,stress <0  S unchanged • No interface state generation 10

  11. Correlation between Δ V T and Δ g m PBTI PBTI NBTI NBTI Guo, TED 2017 • Good correlation between PBTI and NBTI during stress and recovery • One physical mechanism, fully reversible 11

  12. Functional dependence of V T V T well described by power-law function : PBTI NBTI NBTI PBTI Guo, TED 2017 Consistent with electron trapping/detrapping in oxide 12

  13. PBTI/NBTI: Recoverable electron trapping/detrapping in oxide 0 13

  14. PBTI/NBTI: Recoverable electron trapping/detrapping in oxide 0 14

  15. PBTI/NBTI: Recoverable electron trapping/detrapping in oxide 0 15

  16. PBTI/NBTI: Recoverable electron trapping/detrapping in oxide 0 16

  17. PBTI/NBTI: Recoverable electron trapping/detrapping in oxide 0 17

  18. PBTI in HfO 2 /InGaAs system 0 Cai, IEDM 2016 18

  19. Oxide trapping in other high-k/MOS systems Al 2 O 3 /Si Al 2 O 3 /InGaAs HfO 2 /Ge Wu, IEDM 2005 HfO 2 /Si 0 Al 2 O 3 /InGaAs Si HK/MG Franco, IRPS 2014 Zafar, TDMR 2005 Franco, IEDM 2017 19

  20. Oxide trapping in other high-k/MOS systems Al 2 O 3 /Si Al 2 O 3 /InGaAs HfO 2 /Ge Wu, IEDM 2005 HfO 2 /Si 0 Al 2 O 3 /InGaAs Si HK/MG Franco, IRPS 2014 Zafar, TDMR 2005 Franco, IEDM 2017 20

  21. Oxide trapping in other high-k/MOS systems Al 2 O 3 /Si Al 2 O 3 /InGaAs HfO 2 /Ge Wu, IEDM 2005 HfO 2 /Si 0 Al 2 O 3 /InGaAs Si HK/MG Franco, IRPS 2014 Zafar, TDMR 2005 Franco, IEDM 2017 21

  22. Oxide trapping in other high-k/MOS systems Al 2 O 3 /Si Al 2 O 3 /InGaAs HfO 2 /Ge Wu, IEDM 2005 HfO 2 /Si 0 Al 2 O 3 /InGaAs Si HK/MG Franco, IRPS 2014 Zafar, TDMR 2005 Franco, IEDM 2017 22

  23. Oxide trapping in other high-k/MOS systems Al 2 O 3 /Si Al 2 O 3 /InGaAs HfO 2 /Ge Wu, IEDM 2005 HfO 2 /Si 0 Al 2 O 3 /InGaAs Si HK/MG Franco, IRPS 2014 Zafar, TDMR 2005 Franco, IEDM 2017 23

  24. What are these defects? Prime suspect: O vacancies Al 2 O 3 /GaN band alignment: Formation energy of O vacancies: 0 Liu, APL 2010 Defect states in Al 2 O 3 right above conduction band edge of GaN 24

  25. What are these defects? Prime suspect: O vacancies Al 2 O 3 /GaN band alignment: Formation energy of O vacancies: 0 Liu, APL 2010 Defect states smear into bands in amorphous material 25

  26. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 26

  27. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 27

  28. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 28

  29. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 29

  30. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 30

  31. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 31

  32. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 32

  33. How to mitigate? Look at CMOS literature t IL ↑ AC BTI more benign Krishnan, IRPS 2012 Reduce high-k thickness Introduce SiON interfacial Cartier, IEDM 2011 layer Cartier, IEDM 2011 0 Short, high-T anneal Reduce I G LaSiO interlayer Franco, IRPS 2017 Krishnan, IRPS 2012 Franco, IRPS 2017 33

  34. NBTI under harsher stress High-voltage and high-temperature stress: Guo, IRPS 2016 • Three regimes: N egative ∆V T  positive ∆V T  negative ∆V T • Permanent negative ∆V T after final thermal detrapping 34

  35. NBTI under harsher stress High-voltage and high-temperature stress: Trapping in GaN channel under gate edge (recoverable) Guo, IRPS 2016 • Three regimes: N egative ∆V T  positive ∆V T  negative ∆V T • Permanent negative ∆V T after final thermal detrapping 35

  36. NBTI under harsher stress High-voltage and high-temperature stress: Trapping in GaN channel under gate edge (recoverable) Interface trap formation (permanent) Guo, IRPS 2016 • Three regimes: N egative ∆V T  positive ∆V T  negative ∆V T • Permanent negative ∆V T after final thermal detrapping 36

  37. Conclusions • PBTI and NBTI (benign stress): ‒ recoverable ΔV T , Δ g m due to electron trapping/detrapping in pre- existing oxide traps ‒ Experimental observations well described by oxide trapping model • Many avenues for mitigation  study Si high-k/MOS literature • New degradation physics under harsher stress (NBTI): ‒ r ecoverable ΔV T >0, ΔS due to electron trapping in substrate ‒ non- recoverable ΔV T <0, Δ g m , Δ S due to interface state formation 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend