beyond sm higgs shufang su u of arizona
play

Beyond SM Higgs Shufang Su U. of Arizona ISHP2013 IHEP Aug - PowerPoint PPT Presentation

Beyond SM Higgs Shufang Su U. of Arizona ISHP2013 IHEP Aug 12-17, 2013 S. Su ``BREAKTHROUGH of the YEAR - Science - S. Su 2 Higgs is discovered - Now what? S. Su 3 Celebration !!! - S. Su 3 Then What? light, weakly


  1. Indirect Experimental Constraints T. Han, T. Li, SS and L. Wang (2013) - 300 M 2 (GeV) 250 200 150 100 50 100 150 200 250 300 S. Su 16 M t 1 (GeV) ∼

  2. Indirect Experimental Constraints T. Han, T. Li, SS and L. Wang (2013) - 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 200 150 100 50 100 150 200 250 300 S. Su 16 M t 1 (GeV) ∼

  3. Indirect Experimental Constraints T. Han, T. Li, SS and L. Wang (2013) - 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 200 M 1 < M st1 < M 2 < M sb1 150 100 50 100 150 200 250 300 S. Su 16 M t 1 (GeV) ∼

  4. Indirect Experimental Constraints T. Han, T. Li, SS and L. Wang (2013) - 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 200 M 1 < M st1 < M 2 < M sb1 150 M 1 < M 2 < M st1 < M sb1 100 50 100 150 200 250 300 S. Su 16 M t 1 (GeV) ∼

  5. Stop and sbottom search limits - ~ ~ ~ ~ � � (*) � 0 ~ ~ ∼ ± ± t t production, t b+ , W + Status: December 2012 0 � � � � � → χ 1 1 1 b - b production, b b 1 1 1 1 1 1 [GeV] 1 700 [GeV] ATLAS Preliminary SUSY -1 -1 σ L = 13 fb s =8 TeV L = 4.7 fb s =7 TeV Observed limit ( 1 ) 500 ± int int theory ATLAS Preliminary m = m + 5 GeV � 0 0L ATLAS-CONF-2013-001 - ± � � σ 1 1 Expected limit ( ± 1 ) 0 1 m = 106 GeV � - 2L [1208.4305], 1-2L [1209.2102] � exp � ± 0 1 600 m 1 ∼ χ m = 150 GeV 1L ATLAS-CONF-2012-166 - m All limits at 95% CL � ± ∫ 1 m = m ~ - 10 GeV -1 2L ATLAS-CONF-2012-167 - ± t � L dt = 12.8 fb , s =8 TeV 1 -1 1 m = 2 × m CDF 2.65 fb 400 � 0 1L ATLAS-CONF-2012-166 1-2L [1209.2102] � ± � 1 1 -1 D0 5.2 fb Observed limits Observed limits (-1 ) Expected limits � 500 theo -1 ATLAS 2.05 fb , s =7 TeV -1 ATLAS 4.7 fb , s =7 TeV 300 400 forbidden +5 GeV) 0 = m � � 1 ∼ 0 χ ( m � ± � b 1 300 1 → ± +m � ~ � 1 b 200 < m b 1 ) m 0 × � m ~ = 2 � t 1 m = m + 5 GeV 1 � 0 � ± ( m � � ± 1 1 � -1 +m 1 L = 12.8 fb � ± � < m int 1 b m ~ 200 t 1 m = 2 m × � 0 � ± � 1 100 1 -1 L = 13 fb int m < 103.5 GeV � m = m - 10 GeV ± ~ � t 1 � ± 1 1 100 -1 L = 13 fb int m < 106 GeV � ± � m = 106 GeV m = 150 GeV 1 � ± � ± 1 1 -1 -1 L = 4.7 fb L = 13 fb int int 0 0 200 300 400 500 600 100 200 300 400 500 600 700 m [GeV] m [GeV] ~ ~ t b 1 1 ATLAS-CONF-2012-165 S. Su 17

  6. Stop and sbottom search limits - ~ ~ ~ ~ � � (*) � 0 ~ ~ ∼ ± ± t t production, t b+ , W + Status: December 2012 0 � � � � � → χ 1 1 1 b - b production, b b 1 1 1 1 1 1 [GeV] 1 700 [GeV] ATLAS Preliminary SUSY -1 -1 σ L = 13 fb s =8 TeV L = 4.7 fb s =7 TeV Observed limit ( 1 ) 500 ± int int theory ATLAS Preliminary m = m + 5 GeV � 0 0L ATLAS-CONF-2013-001 - ± � � σ 1 1 Expected limit ( ± 1 ) 0 1 m = 106 GeV � - 2L [1208.4305], 1-2L [1209.2102] � exp � ± 0 1 600 m 1 ∼ χ m = 150 GeV 1L ATLAS-CONF-2012-166 - m All limits at 95% CL � ± ∫ 1 m = m ~ - 10 GeV -1 2L ATLAS-CONF-2012-167 - ± t � L dt = 12.8 fb , s =8 TeV 1 -1 1 m = 2 × m CDF 2.65 fb 400 � 0 1L ATLAS-CONF-2012-166 1-2L [1209.2102] � ± � strong limits from sb search. 1 1 -1 D0 5.2 fb Observed limits Observed limits (-1 ) Expected limits � 500 theo -1 ATLAS 2.05 fb , s =7 TeV -1 ATLAS 4.7 fb , s =7 TeV 300 400 forbidden +5 GeV) 0 = m � � 1 ∼ 0 χ ( m � ± � b 1 300 1 → ± +m � ~ � 1 b 200 < m b 1 ) m 0 × � m ~ = 2 � t 1 m = m + 5 GeV 1 � 0 � ± ( m � � ± 1 1 � -1 +m 1 L = 12.8 fb � ± � < m int 1 b m ~ 200 t 1 m = 2 m × � 0 � ± � 1 100 1 -1 L = 13 fb int m < 103.5 GeV � m = m - 10 GeV ± ~ � t 1 � ± 1 1 100 -1 L = 13 fb int m < 106 GeV � ± � m = 106 GeV m = 150 GeV 1 � ± � ± 1 1 -1 -1 L = 4.7 fb L = 13 fb int int 0 0 200 300 400 500 600 100 200 300 400 500 600 700 m [GeV] m [GeV] ~ ~ t b 1 1 ATLAS-CONF-2012-165 S. Su 17

  7. Stop and sbottom search limits - ~ ~ ~ ~ � � (*) � 0 ~ ~ ∼ ± ± t t production, t b+ , W + Status: December 2012 0 � � � � � → χ 1 1 1 b - b production, b b 1 1 1 1 1 1 [GeV] 1 700 [GeV] ATLAS Preliminary SUSY -1 -1 σ L = 13 fb s =8 TeV L = 4.7 fb s =7 TeV Observed limit ( 1 ) 500 ± int int theory ATLAS Preliminary m = m + 5 GeV � 0 0L ATLAS-CONF-2013-001 - ± � � σ 1 1 Expected limit ( ± 1 ) 0 1 m = 106 GeV � - 2L [1208.4305], 1-2L [1209.2102] � exp � ± 0 1 600 m 1 ∼ χ m = 150 GeV 1L ATLAS-CONF-2012-166 - m All limits at 95% CL � ± ∫ 1 m = m ~ - 10 GeV -1 2L ATLAS-CONF-2012-167 - ± t � L dt = 12.8 fb , s =8 TeV 1 -1 1 m = 2 × m CDF 2.65 fb 400 � 0 1L ATLAS-CONF-2012-166 1-2L [1209.2102] � ± � strong limits from sb search. stop limit relatively weak. 1 1 -1 D0 5.2 fb Observed limits Observed limits (-1 ) Expected limits � 500 theo -1 ATLAS 2.05 fb , s =7 TeV -1 ATLAS 4.7 fb , s =7 TeV 300 400 forbidden +5 GeV) 0 = m � � 1 ∼ 0 χ ( m � ± � b 1 300 1 → ± +m � ~ � 1 b 200 < m b 1 ) m 0 × � m ~ = 2 � t 1 m = m + 5 GeV 1 � 0 � ± ( m � � ± 1 1 � -1 +m 1 L = 12.8 fb � ± � < m int 1 b m ~ 200 t 1 m = 2 m × � 0 � ± � 1 100 1 -1 L = 13 fb int m < 103.5 GeV � m = m - 10 GeV ± ~ � t 1 � ± 1 1 100 -1 L = 13 fb int m < 106 GeV � ± � m = 106 GeV m = 150 GeV 1 � ± � ± 1 1 -1 -1 L = 4.7 fb L = 13 fb int int 0 0 200 300 400 500 600 100 200 300 400 500 600 700 m [GeV] m [GeV] ~ ~ t b 1 1 ATLAS-CONF-2012-165 S. Su 17

  8. Stop and sbottom decay - Mass (GeV) M 1 < M 2 < M st1 < M sb1 M 1 < M st1 < M 2 < M sb1 ˜ b 1 ˜ 200 b 1 b b ˜ t 1 χ 0 ˜ χ ± ˜ 150 2 1 b b χ 0 ˜ χ + ˜ ˜ 2 t 1 1 W c Z/h Z/h Z/h W + 100 χ 0 χ 0 ˜ ˜ 1 1 S. Su 18

  9. Stop and sbottom decay - Mass (GeV) M 1 < M 2 < M st1 < M sb1 M 1 < M st1 < M 2 < M sb1 ˜ b 1 ˜ 200 b 1 b b ˜ t 1 χ 0 ˜ χ ± ˜ 150 2 1 1 b 1 ) b bW * χ ∼ 0 ∼ + ∼ BR(t b χ χ 0 ˜ χ + 1 1 ˜ ˜ 2 t 1 1 -1 W 10 c Z/h Z/h Z/h W + -2 ∼ 0 10 c χ 100 1 χ 0 χ 0 ˜ ˜ 1 1 -3 10 100 120 140 160 180 200 M t ∼ 1 (GeV) S. Su 18

  10. Stop and sbottom decay 1 1 ) - BR(b ∼ Mass (GeV) ∼ 0 0.75 b χ 2 M 1 < M 2 < M st1 < M sb1 M 1 < M st1 < M 2 < M sb1 0.5 ˜ b 1 ˜ 200 b 1 ∼ 0 0.25 b χ 1 b b 0 100 150 200 250 300 M b ∼ 1 (GeV) ˜ t 1 χ 0 ˜ χ ± ˜ 150 2 1 b b χ 0 ˜ χ + ˜ ˜ 2 t 1 1 W c Z/h Z/h Z/h W + 100 χ 0 χ 0 ˜ ˜ 1 1 S. Su 18

  11. Stop and sbottom decay - Mass (GeV) M 1 < M 2 < M st1 < M sb1 M 1 < M st1 < M 2 < M sb1 ˜ b 1 ˜ 200 b 1 b b ˜ t 1 χ 0 ˜ χ ± ˜ 150 2 1 b b χ 0 ˜ χ + ˜ ˜ 2 t 1 1 W c Z/h Z/h Z/h W + 100 χ 0 χ 0 ˜ ˜ 1 1 S. Su 18

  12. Stop, sbottom and Wino spectrum - Non-decoupling region of MSSM: highly predictive spectrum 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 M 1 < M st1 < M 2 < M sb1 200 150 M 1 < M 2 < M st1 < M sb1 M 2 < M 1 disfavored 100 T. Han, T.Li, SS and L. Wang (2013) 50 100 150 200 250 300 S. Su M t 1 (GeV) 19 ∼

  13. Stop, sbottom and Wino spectrum - Non-decoupling region of MSSM: highly predictive spectrum 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 M 1 < M st1 < M 2 < M sb1 200 150 M 1 < M 2 < M st1 < M sb1 M 2 < M 1 disfavored 100 T. Han, T.Li, SS and L. Wang (2013) 50 100 150 200 250 300 S. Su M t 1 (GeV) 19 ∼

  14. Stop, sbottom and Wino spectrum - Non-decoupling region of MSSM: highly predictive spectrum 300 M 2 (GeV) 250 M 1 < M st1 < M sb1 < M 2 M 1 < M st1 < M 2 < M sb1 200 150 M 1 < M 2 < M st1 < M sb1 M 2 < M 1 disfavored 100 T. Han, T.Li, SS and L. Wang (2013) 50 100 150 200 250 300 S. Su M t 1 (GeV) 19 ∼

  15. - S. Su 20

  16. MSSM: need large loop correction from stop sector - S. Su 20

  17. MSSM: need large loop correction from stop sector - heavy stops (with large LR mixing): fine-tuning S. Su 20

  18. MSSM: need large loop correction from stop sector - heavy stops (with large LR mixing): fine-tuning tree level m h0 < m Z S. Su 20

  19. MSSM: need large loop correction from stop sector - heavy stops (with large LR mixing): fine-tuning tree level m h0 < m Z V ( φ ) V ( ⌥ ) = + µ 2 ⌥ † ⌥ + ⇤ ( ⌥ † ⌥ ) 2 . − ν ν φ H = − 2 µ 2 = 2 λ v 2 s M 2 S. Su 20

  20. MSSM: need large loop correction from stop sector - heavy stops (with large LR mixing): fine-tuning tree level m h0 < m Z V ( φ ) V ( ⌥ ) = + µ 2 ⌥ † ⌥ + ⇤ ( ⌥ † ⌥ ) 2 . − ν ν φ H = − 2 µ 2 = 2 λ v 2 s M 2 λ = (g 1 2 +g 22 )/8 S. Su 20

  21. MSSM: need large loop correction from stop sector - heavy stops (with large LR mixing): fine-tuning tree level m h0 < m Z V ( φ ) V ( ⌥ ) = + µ 2 ⌥ † ⌥ + ⇤ ( ⌥ † ⌥ ) 2 . − ν ν φ H = − 2 µ 2 = 2 λ v 2 s M 2 λ = (g 1 2 +g 22 )/8 add another singlet S ⇒ NMSSM S. Su 20

  22. NMSSM Higgs Sector ๏ Type II Two Higgs Doublet Model plus singlet S - H d + 1 u c ˆ d c ˆ e c ˆ Q + Y d ˆ H u ˆ H d ˆ H d ˆ L + ⇤ ˆ S ˆ H u ˆ 3 ⇥ ˆ S 3 W NMSSM = Y u ˆ Q + Y e ˆ � ⇥ t � H d ) S + 1 S |S| 2 + 3 ⇥ A κ S 3 + c.c. H d H † V H,Soft = m 2 H u H † u H u + m 2 d H d + M 2 ⇤ A λ ( H T ⌃ ๏ SSB √ →   √   S → v s / 2  H 0 v d / 2  H + √ d u H d = , H u = ( µ = λ v s / 2)  √  H 0 v u / 2 H − d u after EWSB, 7 physical Higgses d = v 2 = (246GeV) 2 v 2 u + v 2 CP-even Higgses: H 1 , H 2 , H 3 CP-odd Higgs: A 1 , A 2 tan β = v u /v d Charged Higgses: H ± S. Su 21

  23. NMSSM : Masses for Higgses ๏ Effects of singlet - - lift ( m hv ) tree , small tan β , large λ Z cos 2 2 β + 1 2( λ v ) 2 sin 2 2 β ( m 2 h v ) tree = m 2 - mixing with singlet: change H i WW/ZZ, H i bb, H i gg, H i γγ ๏ Lots of work on (125 GeV) Higgs in NMSSM framework ... Gunion et. al, 1201.0982 Heng, 1210.3751 Ellwanger 1112.3548 Choi et. al., 1211.0875 King et. al., 1201.2671 King et. al., 1211.5074 Cao et. al., 1202.5821 Dreiner et. al., 1211.6987 EllWanger et. al., 1203.5048 Das et. al., 1301.7548 Benbrik et. al., 1207.1096 ... many other Jack’s, Ellwanger’s paper ... Gunion et. al., 1207.1545 (incomplete list) Gunion et. al., 1208.1817 ๏ H3 heavy, m A large Cheng et. al., 1207.6392 Belanger et. al., 1208.4952 ๏ H1 126 or H2 126 Agashe et. al., 1209.2115 ๏ h v /S mixing Belanger et. al., 1210.1976 S. Su 22

  24. NMSSM : m A decouple case ๏ push down: m hv < m S - ๏ push up: m hv > m S S h v S h v h v S h v S ๏ H 1 (SM-like) still heavy enough ๏ H 1 (singlet-like) not ruled out ≥ 124 GeV by LEP ⇒ not too large mass mixing ⇒ not too large state mixing (to push down m H1 too low) (to have too much H 1 ZZ coupling) Agashe et. al., 1209.2115 S. Su 23

  25. NMSSM : m A decouple case ๏ push down: m hv < m S - ๏ push up: m hv > m S S h v S h v h v S h v S ๏ H 1 (SM-like) still heavy enough ๏ H 1 (singlet-like) not ruled out ≥ 124 GeV by LEP ⇒ not too large mass mixing ⇒ not too large state mixing (to push down m H1 too low) (to have too much H 1 ZZ coupling) Need some tuning to make it work Agashe et. al., 1209.2115 (without too much help from stops) S. Su 23

  26. NMSSM : Masses for Higgses Our work: Focus on the NMSSM low m A region: m A ≤ 2 m Z All Higgses light - could have large mixing effects - can be probed experimentally S. Su

  27. NMSSM : Masses for Higgses Our work: Focus on the NMSSM low m A region: m A ≤ 2 m Z All Higgses light - could have large mixing effects decoupling region non-decoupling region - can be probed experimentally ๏ h 0 SM-like: large mA ≥ 300 GeV ๏ small m A ~ m Z : H 0 SM-like S. Su

  28. NMSSM : Masses for Higgses Our work: Focus on the NMSSM low m A region: m A ≤ 2 m Z All Higgses light - could have large mixing effects decoupling region non-decoupling region - can be probed experimentally ๏ h 0 SM-like: large mA ≥ 300 GeV ๏ small m A ~ m Z : H 0 SM-like both are not necessary true in NMSSM S. Su

  29. NMSSM non-decoupling cases MSSM MSSM H v h v h v H v S. Su

  30. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S h S H v H v H v H v h S h v h v h v h v h v h v h v h v S S H v H v H v H v S h S. Su

  31. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S h S H v H v H v H v h S h v h v h v h v h v h v h v h v S S H v H v H v H v S h S. Su

  32. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S h S H v H v H v H v h S h v h v h v h v h v h v h v h v S S H v H v H v H v S h S. Su

  33. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v h S h v h v h v h v h v h v h v h v S S H v H v H v H v S S. Su

  34. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v S h v h v h v h v h v h v h v h v S S H v H v H v H v S S. Su

  35. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v S h v h v h v h v h v h v h v h v S S H v H v H v H v S S. Su

  36. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v S h v h v h v h v h v h v h v h v S S H v H v H v H v S S. Su

  37. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v S h v h v h v h v h v h v h v h v S S H v H v H v H v S could be realized S. Su

  38. NMSSM non-decoupling cases H 1 -126 H 1 -126 H 2 -126 H 2 -126 H 3 -126 H 3 -126 MSSM MSSM S S H v H v H v H v S h v h v h v h v h v h v h v h v S S H v H v H v H v S could be realized hard to realized S. Su

  39. NMSSM Higgs N. Christensen, T. Han, Z. Liu, SS (2013) -126 H 2 -126 H 2 -126 H 1 -126 H 1 -126 S S H v ๏ H 1 126 GeV H v H v ๏ H 2 126 GeV S h v h v h v h v S H v S. Su 26

  40. NMSSM Higgs N. Christensen, T. Han, Z. Liu, SS (2013) - ๏ σ γγ vs σ WW ๏ Br WW vs Br bb H 2 → H 1 H 1 • grey: pass exp • pink: 124 < m H2 < 128 GeV • green, red, purple, black: satisfy σ XBr( γγ , WW) - H 2 region IA , m H1 >m H2 /2, | ξ H2hv | 2 >0.5 - H 2 region IB , m H1 >m H2 /2, | ξ H2hv | 2 <0.5 - H 2 region II , m H1 <m H2 /2, H 2 → H 1 H 1 • black: perturbativity till m GUT S. Su 27

  41. NMSSM Higgs N. Christensen, T. Han, Z. Liu, SS (2013) - ๏ σ γγ vs σ WW ๏ Br WW vs Br bb large exotic H SM decay H 2 → H 1 H 1 • grey: pass exp • pink: 124 < m H2 < 128 GeV • green, red, purple, black: satisfy σ XBr( γγ , WW) - H 2 region IA , m H1 >m H2 /2, | ξ H2hv | 2 >0.5 - H 2 region IB , m H1 >m H2 /2, | ξ H2hv | 2 <0.5 - H 2 region II , m H1 <m H2 /2, H 2 → H 1 H 1 • black: perturbativity till m GUT S. Su 27

  42. - Generic 2HDM − 11 1 22 2 12 1 +1 1 Φ 1 ) 2 + 1 2 Φ 2 ) 2 + λ 3 ( Φ † 11 Φ † 22 Φ † 12 Φ † 2 λ 1 ( Φ † 2 λ 2 ( Φ † 1 Φ 1 )( Φ † V ( Φ 1 , Φ 2 ) = m 2 1 Φ 1 + m 2 2 Φ 2 − ( m 2 ⇤ ⌅ 1 Φ 2 + h.c.) 2 Φ 2 ) 2 2 2 1 1 ⇤ 1 ⇤ ⌅ 1 Φ 2 ) 2 + h.c. ⌅ ⇤ � ⇥ ⌅ + λ 4 ( Φ † 1 Φ 2 )( Φ † 2 λ 5 ( Φ † ( Φ † 1 Φ 1 ) + λ 7 ( Φ † ( Φ † 2 Φ 1 ) + + 2 Φ 2 ) 1 Φ 2 ) + h.c. λ 6 . ⇤ � ⇥ ⌅ after EWSB, 5 physical Higgses CP-even Higgses: h 0 , H 0 CP-odd Higgs: A 0 Charged Higgses: H ± S. Su 28

  43. h 0 126 GeV : sin( β - α ) - B. Coleppa, F. Kling and SS (2013) 5 [GeV] β tan + H m 500 0 0 -1 0 1 0 500 sin( - ) β [GeV] α m [GeV] A S. Su 29

  44. h 0 126 GeV : sin( β - α ) - B. Coleppa, F. Kling and SS (2013) 5 [GeV] β tan + H m 500 masses are less correlated 0 0 -1 0 1 0 500 sin( - ) β [GeV] α m [GeV] A S. Su 29

  45. - II. Higgs assisted new physics search S. Su 30

  46. LHC SUSY Search limits (CMS) - Summary of CMS SUSY Results* in SMS framework LHCP 2013 m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV ~ ∼ 0 g qq → χ SUS-12-028 L=11.70 /fb ~ ∼ 0 g → qq χ SUS-12-005 SUS-11-024 L=4.70 /fb ~ ∼ 0 g → bb χ SUS-12-024 SUS-12-028 L=19.40 11.70 /fb ~ ∼ 0 gluino production g tt → χ SUS-13-007 SUS-13-008 L=19.40 19.50 /fb ~ 0 - 0 ∼ + ∼ g qq ( l l ) → χ → χ SUS-11-011 L=4.98 /fb 2 ~ ∼ ∼ 0 ∼ 0 2 g → qq( χ → τ τ χ | χ ) SUS-12-004 L=4.98 /fb ~ ∼ ∼ 0 ∼ 0 x = 0.25 ± g → qq( χ → W χ | χ ) SUS-12-010 L=4.98 /fb x = 0.50 x = 0.75 ~ ~ ∼ 0 g → t( t → t χ ) SUS-13-008 L=19.50 /fb ~ ∼ ∼ 0 ± ± g qq( l ) SUS-11-010 L=4.98 /fb → χ → ν χ ~ 0 0 ∼ ∼ x = 0.25 g qq ( Z ) SUS-11-021 SUS-12-002 L=4.98 4.73 /fb → χ → χ x = 0.50 x = 0.75 2 0 0 0 ~ ∼ ∼ ∼ ∼ ± g → qq( χ → γ χ | χ → W χ ) SUS-12-001 L=4.93 /fb 2 ~ ∼ 0 ∼ 0 g → qq( χ → γ χ ) SUS-12-001 L=4.93 /fb 2 ~ ∼ 0 g btW SUS-13-008 L=19.50 /fb → χ ~ ∼ 0 squark SUS-12-028 L=11.70 /fb q → q χ ~ ∼ 0 q → q χ SUS-12-005 SUS-11-024 L=4.70 /fb ~ ∼ 0 left-handed top t t SUS-13-011 L=19.50 /fb → χ unpolarized top right-handed top ~ ∼ 0 t t → χ SUS-11-024 SUS-12-005 L=4.70 /fb stop ~ ∼ ∼ 0 + x = 0.25 t → b( χ → W χ ) SUS-13-011 L=19.50 /fb x = 0.50 x = 0.75 ~ ∼ ∼ + 0 t → b( χ → W χ ) SUS-11-030 L=4.98 /fb ~ s = 7 TeV 0 ∼ sbottom b b SUS-12-028 L=11.70 /fb → χ ~ 0 ∼ SUS-13-008 SUS-12-017 L=19.50 10.50 /fb b tW → χ s = 8 TeV ~ 0 ∼ SUS-13-008 L=19.50 /fb b → bZ χ EWK gauginos 0 0 0 ∼ ∼ ± ∼ ∼ x = 0.05 lll SUS-12-022 L=9.20 /fb x = 0.50 χ χ → ν χ χ x = 0.95 CMS Preliminary 2 0 0 0 ∼ ∼ ± ∼ ∼ SUS-12-022 L=9.20 /fb χ χ → τ τ τ ν χ χ 2 ∼ ∼ - - ∼ 0 ∼ 0 + + χ χ → l l ν ν χ χ SUS-12-022 L=9.20 /fb ∼ ∼ 0 ∼ 0 ∼ 0 ± χ χ → W Z χ χ SUS-12-022 L=9.20 /fb For decays with intermediate mass, 2 ∼ 0 ∼ ∼ 0 ∼ 0 x = 0.05 ± χ χ → ll τ ν χ χ SUS-12-022 L=9.20 /fb x = 0.50 m = x m -(1-x) m ⋅ ⋅ x = 0.95 2 intermediate mother lsp ~ slepton 0 ∼ SUS-12-022 L=9.20 /fb l l → χ 0 200 400 600 800 1000 1200 *Observed limits, theory uncertainties not included Mass scales [GeV] S. Su 31 Only a selection of available mass limits Probe *up to* the quoted mass limit

  47. LHC SUSY Search limits (CMS) - Summary of CMS SUSY Results* in SMS framework LHCP 2013 m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV ~ ∼ 0 g qq → χ SUS-12-028 L=11.70 /fb ~ ∼ 0 g → qq χ SUS-12-005 SUS-11-024 L=4.70 /fb ~ ∼ 0 g → bb χ SUS-12-024 SUS-12-028 L=19.40 11.70 /fb ~ ∼ 0 gluino production g tt → χ SUS-13-007 SUS-13-008 L=19.40 19.50 /fb ~ 0 - 0 ∼ + ∼ g qq ( l l ) → χ → χ SUS-11-011 L=4.98 /fb 2 ~ ∼ ∼ 0 ∼ 0 2 g → qq( χ → τ τ χ | χ ) SUS-12-004 L=4.98 /fb ~ ∼ ∼ 0 ∼ 0 x = 0.25 ± g → qq( χ → W χ | χ ) SUS-12-010 L=4.98 /fb x = 0.50 x = 0.75 ~ ~ ∼ 0 g → t( t → t χ ) SUS-13-008 L=19.50 /fb ~ ∼ ∼ 0 ± ± g qq( l ) SUS-11-010 L=4.98 /fb → χ → ν χ ~ 0 0 ∼ ∼ x = 0.25 g qq ( Z ) SUS-11-021 SUS-12-002 L=4.98 4.73 /fb → χ → χ x = 0.50 x = 0.75 2 0 0 0 ~ ∼ ∼ ∼ ∼ ± g → qq( χ → γ χ | χ → W χ ) SUS-12-001 L=4.93 /fb 2 ~ ∼ 0 ∼ 0 g → qq( χ → γ χ ) SUS-12-001 L=4.93 /fb 2 ~ ∼ 0 g btW SUS-13-008 L=19.50 /fb → χ ~ ∼ 0 squark SUS-12-028 L=11.70 /fb q → q χ ~ ∼ 0 q → q χ SUS-12-005 SUS-11-024 L=4.70 /fb ~ ∼ 0 left-handed top t t SUS-13-011 L=19.50 /fb → χ unpolarized top right-handed top ~ ∼ 0 t t → χ SUS-11-024 SUS-12-005 L=4.70 /fb stop ~ ∼ ∼ 0 + x = 0.25 t → b( χ → W χ ) SUS-13-011 L=19.50 /fb x = 0.50 x = 0.75 ~ ∼ ∼ + 0 t → b( χ → W χ ) SUS-11-030 L=4.98 /fb ~ s = 7 TeV 0 ∼ sbottom b b SUS-12-028 L=11.70 /fb → χ ~ 0 ∼ SUS-13-008 SUS-12-017 L=19.50 10.50 /fb b tW → χ s = 8 TeV ~ 0 ∼ SUS-13-008 L=19.50 /fb b → bZ χ EWK gauginos 0 0 0 ∼ ∼ ± ∼ ∼ x = 0.05 lll SUS-12-022 L=9.20 /fb x = 0.50 χ χ → ν χ χ x = 0.95 CMS Preliminary 2 0 0 0 ∼ ∼ ± ∼ ∼ SUS-12-022 L=9.20 /fb χ χ → τ τ τ ν χ χ 2 ∼ ∼ - - ∼ 0 ∼ 0 + + χ χ → l l ν ν χ χ SUS-12-022 L=9.20 /fb ∼ ∼ 0 ∼ 0 ∼ 0 ± χ χ → W Z χ χ SUS-12-022 L=9.20 /fb For decays with intermediate mass, 2 ∼ 0 ∼ ∼ 0 ∼ 0 x = 0.05 ± χ χ → ll τ ν χ χ SUS-12-022 L=9.20 /fb x = 0.50 m = x m -(1-x) m ⋅ ⋅ x = 0.95 2 intermediate mother lsp ~ slepton 0 ∼ SUS-12-022 L=9.20 /fb l l → χ 0 200 400 600 800 1000 1200 *Observed limits, theory uncertainties not included Mass scales [GeV] S. Su 31 Only a selection of available mass limits Probe *up to* the quoted mass limit

  48. CMS limits - CMS PAS SUS-12-022 dilepton/trilepton + MET -1 CMS Preliminary s = 8 TeV, L = 9.2 fb int [GeV] LEP2 slepton limit LEP2 chargino limit 800 ~ " " 0 - ± + pp , ( l , BF( l l )=0.5) # ! ! 0 1 L 2 1 " ! ~ " 0 " - m ± + pp , ( l , BF( l l )=1) # ! ! R 2 1 ~ " 0 " ± 600 pp # ! ! , ( no l , BF(WZ)=1) 2 1 ~ " " - + - + pp , ( l , BF( l l )=1) # ! ! L 1 1 400 > m 0 " ! 1 = m " ± ! 1 m 0 " ! 2 200 0 100 200 300 400 500 600 700 m = m [GeV] m = 0.5m + 0.5m ~ " " 0 ± " " ± 0 l ! ! ! ! 1 1 1 2 S. Su 32

  49. CMS limits - CMS PAS SUS-12-022 dilepton/trilepton + MET lepton rich final states to -1 CMS Preliminary s = 8 TeV, L = 9.2 fb int enhance reach: only works [GeV] LEP2 slepton limit for Wino NLSP with light LEP2 chargino limit 800 slepton_L. ~ " " 0 - ± + pp , ( l , BF( l l )=0.5) # ! ! 0 1 L 2 1 " ! ~ " 0 " - m ± + pp , ( l , BF( l l )=1) # ! ! R 2 1 Limits weaker for ~ " 0 " ± 600 pp # ! ! , ( no l , BF(WZ)=1) 2 1 ~ " " - + - ๏ slepton_L heavy + pp , ( l , BF( l l )=1) # ! ! L 1 1 ๏ χ 20 , χ 1± being Higgsinos 400 ๏ small m χ 1± - m χ 10 > m 0 " ! 1 = m " ± ! 1 m 0 " ! 2 200 0 100 200 300 400 500 600 700 m = m [GeV] m = 0.5m + 0.5m ~ " " 0 ± " " ± 0 l ! ! ! ! 1 1 1 2 S. Su 32

  50. CMS limits - CMS PAS SUS-12-022 dilepton/trilepton + MET -1 CMS Preliminary s = 8 TeV, L = 9.2 fb int [GeV] LEP2 slepton limit LEP2 chargino limit 800 ~ " " 0 - ± + pp , ( l , BF( l l )=0.5) # ! ! 0 1 L 2 1 " ! ~ " 0 " - m ± + pp , ( l , BF( l l )=1) # ! ! R 2 1 ~ " 0 " ± 600 pp # ! ! , ( no l , BF(WZ)=1) 2 1 ~ " " - + - + pp , ( l , BF( l l )=1) # ! ! L 1 1 100% WZ Br -- Usually not realized! 400 > m 0 " ! 1 = m " ± ! 1 m 0 " ! 2 200 0 100 200 300 400 500 600 700 m = m [GeV] m = 0.5m + 0.5m ~ " " 0 ± " " ± 0 l ! ! ! ! 1 1 1 2 S. Su 32

  51. MSSM EW-ino sector 101 - ๏ Gauginos and Higgsinos ~ ~ - Neutral ones: Bino, Wino, H u0 , H d0 ~ ~ - charged ones: Winos, H u+ , H d- ๏ Neutralinos and charginos ๏ Parameters: M 1 , M 2 , µ, tan β S. Su 33

  52. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 Z χ 10 W ± 0 χ 1 S. Su 34

  53. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 S. Su 34

  54. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 20 χ 10 h χ 10 Z χ 10 χ 1± S. Su 34

  55. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 20 χ 10 h χ 10 Z χ 1± W χ 10 χ 1± S. Su 34

  56. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 30 χ 20 χ 2± χ 20 χ 1± W χ 10 h χ 10 Z χ 1± W χ 10 h χ 10 Z χ 10 χ 1± S. Su χ 10 34 χ 1±

  57. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 30 χ 20 χ 2± χ 20 χ 1± W χ 10 h χ 10 Z χ 1± W χ 10 h χ 10 Z χ 10 W χ 10 χ 1± S. Su χ 10 34 χ 1±

  58. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 30 χ 20 χ 2± χ 20 χ 1± W χ 10 h χ 10 Z χ 1± W χ 1± Z χ 1± h χ 10 h χ 10 Z χ 10 W χ 10 χ 1± S. Su χ 10 34 χ 1±

  59. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 A rich mixture of (W/Z/h)(W/Z/h)+MET final states! χ 10 h χ 10 Z χ 10 W ± 0 χ 1 χ 30 χ 20 χ 2± χ 20 χ 1± W χ 10 h χ 10 Z χ 1± W χ 1± Z χ 1± h χ 10 h χ 10 Z χ 10 W χ 10 χ 1± S. Su χ 10 34 χ 1±

  60. Decay of heavy neutralino and chargino - χ 1± 0 χ 2 A rich mixture of (W/Z/h)(W/Z/h)+MET final states! χ 10 h χ 10 Z χ 10 W ± Gunion et. al., Int. J. Mod. Phys. A2 (1987) 1145 Gunion and Haber, PRD 37 (1988) 2515 Bartl et. al., PLB 216 (1989) 233 0 χ 1 Djouadi et. al., hep-ph/0104115 Datta et. al., hep-ph/0303095 χ 30 Huitu et. al., arXiv: 0808.3094 χ 20 χ 2± Gori et. al., arXiv: 1103.4138 χ 20 Stal and Weiglein, arXiv: 1108.0595 χ 1± W Baer et. al., arXiv: 1201.2949 χ 10 h χ 10 Z Ghosh et. al., arXiv:1202.4937 χ 1± W χ 1± Z χ 1± h Howe and Saraswat, arXiv: 1208.1542 Arbey et. al., arXiv: 1212.6865, T. Han, S. Padhi and SS, to appear... χ 10 h χ 10 Z χ 10 W χ 10 χ 1± S. Su χ 10 34 χ 1±

  61. Six cases - LSP(s): usual LSP+degenerate states NLSP(s): 2nd set low-lying (degenerate) states Case AI: Bino LSP-Wino NLSP M 1 < M 2 < µ Case AII: Bino LSP-Higgsino NLSP M 1 < µ < M 2 Case BI: Wino LSP-Bino NLSP M 2 < M 1 < µ Case BII: Wino LSP-Higgsino NLSP M 2 < µ < M 1 Case CI: Higgsino LSP-Bino NLSP µ < M 1 < M 2 Case CII: Higgsino LSP-Wino NLSP µ < M 2 < M 1 S. Su 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend