benchmarking rotating flow with free surface deformation
play

Benchmarking rotating flow with free surface deformation Wen Yang, - PowerPoint PPT Presentation

Benchmarking rotating flow with free surface deformation Wen Yang, Guangyang Cui, Jalel Chergui, Yann Fraigneau Ivan Delbende, Laurent Martin Witkowski Universit e Pierre et Marie Curie (Paris) & Limsi-Cnrs (Orsay) Challenge for numerical


  1. Benchmarking rotating flow with free surface deformation Wen Yang, Guangyang Cui, Jalel Chergui, Yann Fraigneau Ivan Delbende, Laurent Martin Witkowski Universit´ e Pierre et Marie Curie (Paris) & Limsi-Cnrs (Orsay)

  2. Challenge for numerical simulation Air / Water R ∼ 62 . 5 mm , H ∼ 25 . 4 mm , µ ∼ 1 mPa · s , Ω = 638 rpm G = 0 . 4 , Re = 2 . 6 · 10 5 , Fr = 28 . 4

  3. Configuration Parameters : R , Re = Ω R 2 , Fr = Ω 2 R G = H . ν g

  4. Previous studies I : Re ∼ 10 5 , Fr ∼ 1 − 10, H / R ∼ 1 Vatistas, Canada, 1990 → now T. Bohr, Danemark, 2006 → now Iga, Iima, Suzuki, Tasaka, Japan, 2008 → now Theories based on model baseflow : Vatistas, Bohr, Mougel (IMFT).

  5. Configuration II : Two fluids z Fluid 1 R H h Fluid 2 r Fixed cavity Rotating disk Ω Parameters : R , Re = Ω R 2 , Fr = Ω 2 R G = H h = h R , ρ r = ρ 1 , µ r = µ 1 ¯ ν 2 g ρ 2 µ 2 We = ?

  6. Previous studies II : Re ∼ 100 − 10 3 , Fr ∼ 1 − 10, H / R ∼ 1, ¯ h ∼ 0 . 1 − 1, ρ r ∼ 1. Takeda, Japan, 2009 Tsai, Taiwan, 2015 Simulations : ◮ Lopez, USA, 2012, small We ◮ Herrada, Spain, 2015, ρ r << 1, small We

  7. Comparison on ”Mont Fuji” Re=676 Sunfluidh Re = 676, Fr = 1 . 01, H / R = 2 . 2, ¯ h = 1, ρ r = 1 . 03.

  8. Tools for the benchmark ◮ Two experimental setups ◮ First or Old ◮ Second or New ◮ Five different numerical codes : ◮ Rose (Free surface, curvilinear coordinates, Axi, Newton), L. Kahouadji, W. Yang, L. Martin Witkowski ◮ Blue (Finite diff, Front Tracking, 3D cartesian) D. Juric, J. Chergui ◮ Sfemans (Finite element, Level set, 3D cylindrical), J. L. Guermond, C. Nore ◮ SunFluidh (Finite volume, Level set, Axi, soon 3D cylindrical), Y. Fraigneau ◮ Gerris (VOF , AMR, 3D cartesian), S. Popinet

  9. First experimental setup ◮ Set 1 : G = 0.568, Re = 1026, Fr=1.435 ◮ Set 2 : G = 0.248, Re = 1047, Fr=1.496 Radius : R = 6 . 25 cm , Oil : µ = [ 30 − 50 ] mPa · s , ρ = 866 kg / m 3 . Angular Vel. Ω = [ 100 − 200 ] rpm , Height at rest : H = [ 1 . 55 − 6 ] cm .

  10. Comparison of interface and velocity profiles : Set 1 Vitesse azimutale a R/2 : Set 1 1 Hauteur interface : Set 1 Rose 0.65 Sfemans 0.8 Gerris3D 0.6 SunFluidh 0.6 0.55 z h Rose 0.4 0.5 Sfemans Gerris3D 0.45 SunFluidh 0.2 Expe 0.4 0 0 0.5 1 0 0.1 0.2 0.3 0.4 0.5 r Vt Vitesse axiale a R/2 : Set 1 Vitesse radiale a R/2 : Set 1 1 1 Rose Sfemans Gerris3D SunFluidh z 0.5 0.5 z Rose Sfemans Gerris3D SunFluidh 0 0 -0.2 -0.1 0 0.1 0.2 -0.1 -0.05 0 0.05 Vr Vz

  11. Comparison for unsteady flow Spin up from rest (values close to set 2) ◮ Codes : Blue, Gerris, Sunfluidh

  12. Free surface deformation : spin up from rest ◮ Comparison Blue-Gerris-Sunfluidh-experiment height at r = 0 2 Exp Blue 1.5 SunFluidH128 H center (cm) Gerris3D Rose 1 0.5 0 0 2 4 6 Time (s) G = 0 . 248 , Re = 1198 , Fr = 1 . 41

  13. Free surface deformation : spin up from rest Details on the wave : 0 < t < 1 s 1.6 H center (cm) 1.4 Exp Blue SunFluidH128 1.2 Gerris3D 0 0.2 0.4 0.6 0.8 1 Time (s)

  14. New experimental setup ◮ Much better control of rotation rate, accurate geometry : Fast ◮ Measure of free surface height FTP , Pmmh ◮ Velocity measurement LDV : Limsi (soon)

  15. FTP : Fourier Transform Profilometry (Pmmh) L ∆ ϕ h ( x ′ , y ′ ) = ∆ ϕ − ω 0 D ( Takeda et al. )

  16. Newton’s Bucket : Height measurement Too difficult to simulate with water → glycerol (80 %)-water (20 %). h / R = 0 . 444 , Re = 1595 , Fr = 1 . 52 , We = 1361 3 0 Sunfluidh t=3 s Sunfluidh 128x128 FTP Measure t=3s 2 FTP Measure -0.5 Sunfluidh t=5 s FTP Measure t=5 s 1 -1 h(cm) h(cm) 0 -1.5 -1 -2 -2 -2.5 -3 0 2 4 6 0 5 10 15 20 t(s) x(cm) h ( r = 0 , t ) h ( r , t = 3 s ) et h ( r , t = 5 s )

  17. Newton’s Bucket : comparison at steady state 3 ROSE Needle Measure 2 Sunfluidh 128x128 FTP Measure 1 Theoritical parabola h(cm) 0 -1 -2 -5 0 5 x(cm) ◮ Weak deformation : good agreement ( t = 3 s et t = 5 s ) ◮ Larger deformation : 10% error at the axis.

  18. Conclusion, Next steps ◮ Good predictions for large deformation, small density ratio, 2D axi, moderate Re < Re c ◮ Need to check velocity in experiment : all effect included ? ◮ Improve height measurement → validate temporal evolution. Welcome : ◮ Any suggestions to prevent problems we will face : expe/num ◮ Other code that could simulate such flow.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend