bch codes
play

BCH Codes Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department - PowerPoint PPT Presentation

BCH Codes Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 14, 2014 1 / 13 BCH Codes Discovered by Hocquenghem in 1959 and independently by Bose and Chaudhari


  1. BCH Codes Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay October 14, 2014 1 / 13

  2. BCH Codes • Discovered by Hocquenghem in 1959 and independently by Bose and Chaudhari in 1960 • Cyclic structure proved by Peterson in 1960 • Decoding algorithms proposed/refined by Peterson, Gorenstein and Zierler, Chien, Forney, Berlekamp, Massey. . . • We will discuss a subclass of BCH codes — binary primitive BCH codes 2 / 13

  3. Binary Primitive BCH Codes For positive integers m ≥ 3 and t < 2 m − 1 , there exists an ( n , k ) BCH code with parameters • n = 2 m − 1 • n − k ≤ mt • d min ≥ 2 t + 1 Definition Let α be a primitive element in F 2 m . The generator polynomial g ( x ) of the t -error-correcting BCH code of length 2 m − 1 is the least degree polynomial in F 2 [ x ] that has α, α 2 , α 3 , . . . , α 2 t as its roots. Let ϕ i ( x ) be the minimal polynomial of α i . Then g ( x ) is the LCM of ϕ 1 ( x ) , ϕ 2 ( x ) , . . . , ϕ 2 t ( x ) . 3 / 13

  4. Binary Primitive BCH Code of Length 7 • m = 3 and t < 2 3 − 1 = 4 • Let α be a primitive element of F 8 • For t = 1, g ( x ) is the least degree polynomial in F 2 [ x ] that has as its roots α, α 2 • α is a root of x 8 + x x 8 + x = x ( x + 1 )( x 3 + x + 1 )( x 3 + x 2 + 1 ) • Let α be a root of x 3 + x + 1 • The other roots of x 3 + x + 1 are α 2 , α 4 • For t = 1, g ( x ) = x 3 + x + 1 • For t = 2, g ( x ) is the least degree polynomial in F 2 [ x ] that has as its roots α, α 2 , α 3 , α 4 • The roots of x 3 + x 2 + 1 are α 3 , α 5 , α 6 • For t = 2, g ( x ) = ( x 3 + x + 1 )( x 3 + x 2 + 1 ) • For t = 3, g ( x ) is the least degree polynomial in F 2 [ x ] that has as its roots α, α 2 , α 3 , α 4 , α 5 , α 6 = ⇒ g ( x ) = ( x 3 + x + 1 )( x 3 + x 2 + 1 ) 4 / 13

  5. Binary Primitive BCH Code of Length 7 For a BCH code with parameters m and t , we have • n − k ≤ mt • d min ≥ 2 t + 1 t g ( x ) n − k mt d min 2 t + 1 x 3 + x + 1 1 3 3 3 3 ( x 3 + x + 1 )( x 3 + x 2 + 1 ) 2 6 6 7 5 ( x 3 + x + 1 )( x 3 + x 2 + 1 ) 3 6 9 7 7 Definition A degree m irreducible polynomial in F 2 [ x ] is said to be primitive if the smallest value of N for which it divides x N + 1 is 2 m − 1 Lemma The minimal polynomial of a primitive element is a primitive polynomial. 5 / 13

  6. Single Error Correcting BCH Codes are Hamming Codes We will prove this for m = 3. The proof of the general case is similar. Proof. • Consider a BCH code with parameter m = 3 and t = 1 • Let α be a primitive element of F 8 and a root of x 3 + x + 1 • The generator polynomial g ( x ) = x 3 + x + 1 • The code has length 7 and dimension 4 • A polynomial v ( x ) = v 0 + v 1 x + v 2 x 2 + · · · + v 6 x 6 is a code polynomial ⇐ ⇒ v ( x ) is a multiple of g ( x ) ⇐ ⇒ α is a root of v ( x ) ⇐ ⇒ v ( α ) = 0 ⇒ v 0 + v 1 α + v 2 α 2 + v 3 α 3 + · · · + v 6 α 6 = 0 v ( α ) = 0 ⇐ 6 / 13

  7. Single Error Correcting BCH Codes are Hamming Codes Proof continued. Power Polynomial Tuple � � 0 0 0 0 0 � � 1 1 1 0 0 � � 0 1 0 α α α 2 α 2 � � 0 0 1 α 3 � � 1 + α 1 1 0 α 4 α + α 2 � � 0 1 1 α 5 1 + α + α 2 � � 1 1 1 α 6 1 + α 2 � � 1 0 1 ⇒ v 0 + v 1 α + v 2 α 2 + v 3 α 3 + · · · + v 6 α 6 = 0 v ( α ) = 0 ⇐ v 0 v 0      1 0 0 1 0 1 1  v 1 v 1     � α 6 �  = 0 ⇐ 0 1 0 1 1 1 0  = 0 1 . . ⇐ ⇒ α · · ·   ⇒   .   .     . . 0 0 1 0 1 1 1   v 6 v 6 7 / 13

  8. Degree of Generator Polynomial Theorem For a binary primitive BCH code with parameters m , t and generator polynomial g ( x ) , deg [ g ( x )] ≤ mt. Proof. • g ( x ) = LCM { ϕ 1 ( x ) , ϕ 2 ( x ) , ϕ 3 ( x ) , . . . , ϕ 2 t ( x ) } • If i is an even integer, then i = i ′ 2 a where i ′ is odd α i ′ � 2 a ⇒ α i and α i ′ have the same minimal • α i = � = polynomial • Every even power of α has the same minimal polynomial as some previous odd power of α g ( x ) = LCM { ϕ 1 ( x ) , ϕ 3 ( x ) , ϕ 5 ( x ) , . . . , ϕ 2 t − 1 ( x ) } • Since deg ( ϕ i ) divides m , we have n − k ≤ mt 8 / 13

  9. Lower Bound on Minimum Distance • We want to show that if the generator polynomial has roots α, α 2 , · · · , α 2 t then d min ≥ 2 t + 1 • Suppose there exists a nonzero codeword v = ( v 0 , v 1 , . . . , v n − 1 ) of weight δ ≤ 2 t • The corresponding code polynomial satisfies v ( α i ) = 0 for i = 1 , 2 , 3 , . . . , 2 t v 0 + v 1 α + v 2 α 2 + · · · + v n − 1 α n − 1 = 0 v 0 + v 1 α 2 + v 2 α 4 + · · · + v n − 1 α 2 ( n − 1 ) = 0 . . . v 0 + v 1 α 2 t + v 2 α 4 t + · · · + v n − 1 α 2 t ( n − 1 ) = 0 • Let j 1 , j 2 , . . . , j δ be the nonzero locations in the codeword v j 1 ( α i ) j 1 + v j 2 ( α i ) j 2 + · · · + v j δ ( α i ) j δ = 0 for i = 1 , 2 , . . . , 2 t 9 / 13

  10. Lower Bound on Minimum Distance   α 2 � j 1 α 2 t � j 1 α j 1 � � · · · α 2 � j 2 α 2 t � j 2 α j 2  � �  · · ·    α 2 � j 3 α 2 t � j 3  � � α j 3 � � · · · · · · = 0 v j 1 v j 2 v j δ     . . .   . . . . . .     α 2 � j δ α 2 t � j δ α j δ � � · · ·   α j 1 � 2 α j 1 � 2 t α j 1 � � · · · α j 2 � 2 α j 2 � 2 t α j 2  � �  · · ·    α j 3 � 2 α j 3 � 2 t  � � α j 3 � � = ⇒ · · · · · · = 0 1 1 1     . . .   . . . . . .     α j δ � 2 α j δ � 2 t α j δ � � · · · 10 / 13

  11. Lower Bound on Minimum Distance   α j 1 � 2 α j 1 � δ α j 1 � � · · · α j 2 � 2 α j 2 � δ α j 2  � �  · · ·    α j 3 � 2 α j 3 � δ  � � α j 3 � � = ⇒ · · · · · · = 0 1 1 1     . . .   . . . . . .     α j δ � 2 α j δ � δ α j δ � � · · · � � α j 1 � 2 α j 1 � δ α j 1 � � · · · � � � � α j 2 � 2 α j 2 � δ α j 2 � � � � · · · � � � α j 3 � 2 α j 3 � δ � α j 3 � � = ⇒ · · · = 0 � � � � . . . � � . . . . . . � � � � α j δ � 2 α j δ � δ α j δ � � � � · · · � � 11 / 13

  12. Lower Bound on Minimum Distance α j 1 α ( δ − 1 ) j 1 � � 1 · · · � � α j 2 α ( δ − 1 ) j 2 � � 1 · · · � � � α j 3 α ( δ − 1 ) j 3 � ⇒ α ( j 1 + ··· + j δ ) 1 · · · = = 0 � � � . . . � . . . � � . . . � � � � α j δ α ( δ − 1 ) j δ 1 · · · � � • α j 1 + ··· + j δ � = 0 since α is a nonzero field element • The determinant is a Vandermonde determinant which is not zero • This contradicts our assumption that a nonzero codeword of weight δ ≤ 2 t exists 12 / 13

  13. Questions? Takeaways? 13 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend