bayesx analysing bayesian semiparametric regression models
play

BayesX: Analysing Bayesian semiparametric regression models Andreas - PowerPoint PPT Presentation

BayesX: Analysing Bayesian semiparametric regression models Andreas Brezger, Thomas Kneib and Stefan Lang Institut f ur Statistik, Universit at M unchen Workshop AG-Bayes, 6. Dezember 2002 A. Brezger, T. Kneib and S. Lang Institut f


  1. BayesX: Analysing Bayesian semiparametric regression models Andreas Brezger, Thomas Kneib and Stefan Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Workshop AG-Bayes, 6. Dezember 2002

  2. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Outline of the Talk • What is BayesX? • Bayesian semiparametric regression • Example(s) BayesX: Analysing Bayesian semiparametric regression models 1

  3. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen What is BayesX? BayesX is a tool for Bayesian inference via MCMC simulation techniques. available as a Windows (NT, 95, 98, 2000) based application at http://www.stat.uni-muenchen.de/~lang/ BayesX: Analysing Bayesian semiparametric regression models 2

  4. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Features of the current version • Functions for handling and manipulating data • Functions for handling spatial data • Functions for drawing geographical maps, scatterplots, etc. • Bayesian semiparametric regression • Model selection for DAG’s (by Eva-Maria Fronk) BayesX: Analysing Bayesian semiparametric regression models 3

  5. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Features of the regression tool • Estimation of any generalized additive model • Response: Gaussian, Poisson, Gamma, Binomial, Multinomial BayesX includes as special cases . . . • Generalized linear models • Generalized additive models • Dynamic or state space models • Varying coefficient models • Mixed models • BYM model for disease mapping BayesX: Analysing Bayesian semiparametric regression models 4

  6. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Observation models • Distributional and structural assumptions, given covariates and parameters, are based on generalized linear models. • Response: Gaussian, Gamma, Poisson, Binomial, Multinomial • Replace the linear predictor η = z ′ γ by a semiparametric additive predictor η = f 1 ( x 1 ) + · · · + f p ( x p ) + z ′ γ f 1 , ..., f p are unknown functions of the covariates γ parameter vector for fixed effects BayesX: Analysing Bayesian semiparametric regression models 5

  7. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Extensions Varying coefficient terms η = · · · + f ( x ) z + · · · Surface smoothing η = · · · + f ( x 1 , x 2 ) + · · · BayesX: Analysing Bayesian semiparametric regression models 6

  8. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Priors for a function f η = f 1 ( x 1 ) + · · · + f p ( x p ) + z ′ γ f = Xβ X design matrix β are unknown parameters η = · · · + Xβ + · · · BayesX: Analysing Bayesian semiparametric regression models 7

  9. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen The general prior β | τ 2 ∝ exp( − 1 2 τ 2 β ′ Kβ ) τ 2 ∼ IG ( a, b ) • K is a penalty matrix that penalizes too rough functions f • structure of K depends on type of covariate and on prior beliefs on smoothness of f • amount of smoothness is controlled by τ 2 BayesX: Analysing Bayesian semiparametric regression models 8

  10. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Example 1: P-splines (Eilers and Marx, 1996; Lang and Brezger, 2002) f ( x ) = Spline of degree l with equally spaced inner knots ξ 1 , ..., ξ r between x ( min ) and x ( max ) = β 1 B 1 ( x ) + · · · + β r + l +1 B r + l +1 ( x ) B 1 , ..., B r + l +1 B-spline Basis X design matrix with elements X ( i, j ) = B j ( x i ) BayesX: Analysing Bayesian semiparametric regression models 9

  11. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen a) Spline vom Grad 0 b) Spline vom Grad 1 1.5 .5 1 .45 .5 .4 0 .25 .5 .75 1 0 .25 .5 .75 1 c) Spline vom Grad 2 1 .8 .6 .4 0 .25 .5 .75 1 BayesX: Analysing Bayesian semiparametric regression models 10

  12. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen a) Spline vom Grad 0, B-spline Basisfunktion B^0_1 b) Spline vom Grad 0, B-spline Basisfunktion B^0_2 1 1 .5 .5 0 0 0 .25 .5 .75 1 0 .25 .5 .75 1 c) Spline vom Grad 0, B-spline Basisfunktion B^0_3 d) Spline vom Grad 0, B-spline Basisfunktion B^0_4 1 1 .5 .5 0 0 0 .25 .5 .75 1 0 .25 .5 .75 1 BayesX: Analysing Bayesian semiparametric regression models 11

  13. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen a) Spline vom Grad 1, B-spline Basisfunktionen 1 .5 0 -.25 0 .25 .5 .75 1 1.25 b) Spline vom Grad 2, B-spline Basisfunktionen .8 .6 .4 .2 0 -.5 -.25 0 .25 .5 .75 1 1.25 1.5 BayesX: Analysing Bayesian semiparametric regression models 12

  14. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Example 1: P-splines, frequentist version • relatively large number of inner knots • difference penalty for β 1 , ..., β r + l +1 to penalize too rough functions f • Leads to penalized likelihood estimation m � (∆ k β s ) 2 L = l − λ s = k +1 ∆ k denotes the difference operator of order k . • Problem: Estimation of the smoothing parameter λ . BayesX: Analysing Bayesian semiparametric regression models 13

  15. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen lambda=1000000 lambda=1000000 1.0 1.0 o o o o o o o o o o o o o o o o o o o o o o parameter estimates 0.5 0.5 function estimates 0.0 0.0 -0.5 -0.5 -1.0 -1.0 5 10 15 20 -3 -2 -1 0 1 2 3 parameter number covariate values lambda=100 lambda=100 1.0 1.0 o o o o o parameter estimates 0.5 0.5 o function estimates o o o o 0.0 0.0 o o o o o -0.5 o -0.5 o o o o o o -1.0 -1.0 5 10 15 20 -3 -2 -1 0 1 2 3 parameter number covariate values lambda=0.001 lambda=0.001 1.0 o 1.0 o o o o o parameter estimates 0.5 0.5 function estimates o o o o 0.0 0.0 o o o o -0.5 -0.5 o o o o o -1.0 -1.0 5 10 15 20 -3 -2 -1 0 1 2 3 parameter number covariate values BayesX: Analysing Bayesian semiparametric regression models 14

  16. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Example 1: P-splines, Bayesian approach • replace difference penalties by their stochastic analogues • smoothness prior for β 1 , ..., β r + l +1 to penalize too rough functions f • use first or second order random walks as smoothness prior: β t = β t − 1 + u t (RW1) β t = 2 β t − 1 − β t − 2 + u t (RW2) u t ∼ N (0 , τ 2 ) BayesX: Analysing Bayesian semiparametric regression models 15

  17. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen RW1: P ( β s | β s − 1 , β s +1 ) ✻ β s +1 s ✻ β s s ❄ τ 2 / 2 β s − 1 s ✲ − 1 0 1 BayesX: Analysing Bayesian semiparametric regression models 16

  18. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen RW2: P ( β s | β s − 1 , β s − 2 ) ✻ τ 2 ✻ β s τ 2 s β s − 1 ❄ s β s − 2 s ✲ − 2 − 1 0 BayesX: Analysing Bayesian semiparametric regression models 17

  19. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen RW2: P ( β s | β s − 1 , β s − 2 , β s +1 , β s +2 ) ✻ β s − 2 , β s +2 s s β s +1 s ✻ β s − 1 s β s s ❄ τ 2 / 6 ✲ -2 -1 0 1 2 BayesX: Analysing Bayesian semiparametric regression models 18

  20. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Example 2: Markov random fields • Markov random fields (Besag, York, Mollie 1991), e.g.   1 β j , 1 β s | β − s , τ 2 ∼ N � τ 2  N s N s j ∈ ∂ s ∂ s denoting the sites, that are neighbors of site s N s number of neighbors • X 0/1 design matrix BayesX: Analysing Bayesian semiparametric regression models 19

  21. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen BayesX: Analysing Bayesian semiparametric regression models 20

  22. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Example 3: 2-dimensional surfaces η = · · · + f 1 ( x 1 ) + f 2 ( x 2 ) + f 1 , 2 ( x 1 , x 2 ) + · · · f 1 , 2 = tensor product of one dimensional B-splines m m � � = β ρ,ν B 1 ,ρ ( x 1 ) B 2 ,ν ( x 2 ) . ρ =1 ν =1 spatial smoothness prior fo coefficients β ρ,ν , e.g. 2-dimensional random walks BayesX: Analysing Bayesian semiparametric regression models 21

  23. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Further examples • random intercepts and slopes • varying coefficient models • time varying seasonal effects BayesX: Analysing Bayesian semiparametric regression models 22

  24. A. Brezger, T. Kneib and S. Lang Institut f¨ ur Statistik, Universit¨ at M¨ unchen Bayesian Inference via MCMC • Draw random numbers from the posterior. • Estimate characteristics of the posterior by their empirical analogue. • Efficiency guaranteed by matrix operations for sparse matrices. Details in Fahrmeir, Lang (2001a,b) Lang and Brezger (2002) BayesX: Analysing Bayesian semiparametric regression models 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend