automaten und formale sprachen
play

Automaten und formale Sprachen Notizen zu den Folien Contents 1 - PDF document

Automaten und formale Sprachen Notizen zu den Folien Contents 1 Mathematical foundation and formal proofs 2 Venn diagrams (slide 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Examples to set operations (slide


  1. Automaten und formale Sprachen Notizen zu den Folien Contents 1 Mathematical foundation and formal proofs 2 Venn diagrams (slide 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Examples to set operations (slide 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Examples to the power set (slide 31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Examples to the cross product (slide 33) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Examples to the properties of relations (slides 35 and 37) . . . . . . . . . . . . . . . . . 3 Examples to functions (slide 38) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Truth and validity (slide 40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Example of a proof (slide 47) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Example of a counter example (Slide 48) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Example of a proof about sets (slide 51) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Example of a proof by contradiction (slide 52) . . . . . . . . . . . . . . . . . . . . . . . . 6 Example of a proof by induction (slide 54) . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Languages and grammars 7 Example derivation in a grammar (slide 67) . . . . . . . . . . . . . . . . . . . . . . . . . 7 Comment on Chomsky Hierarchy for Grammars (Slide 78) . . . . . . . . . . . . . . . . . 7 Classifying grammars according to the Chomsky-Hierarchy (slides 78, 79 and 82) . . . . 7 Comment on Chomsky Hierarchy for Languages (Slide 82) . . . . . . . . . . . . . . . . . 8 Word Problem Algorithmus for Type-1-Grammars (slide 86) . . . . . . . . . . . . . . . . 9 3 Finite Automata 9 Transition function of DFAs (slides 92 and 93) . . . . . . . . . . . . . . . . . . . . . . . 9 Solution to exercises of slide 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DFA → regular grammar (slide 96) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transition function of NFAs (slides 100 and 101) . . . . . . . . . . . . . . . . . . . . . . 11 NFA Example (slide 103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Subset construction (slide 106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Regular grammar → NFA (slide 110) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Regular Expressions 14 Precedence of the operations (slide 115) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Examples of regular expressions (slide 117) . . . . . . . . . . . . . . . . . . . . . . . . . 14 Regular expression → NFA (slides 120–126) . . . . . . . . . . . . . . . . . . . . . . . . . 15 NFA → regular expression (slides 128–136) . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 The Pumping Lemma 18 Pigeon Hole Principle (slide 144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Pumping Lemma (slides 148 and 150) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Pumping Lemma examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Minimal automata and Myhill-Nerode aquivalence 20 Equivalence classes (slides 155–159) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Acceptance equivalence example (slide 160) . . . . . . . . . . . . . . . . . . . . . . . . . 21 Acceptance equivalence and Myhill–Nerode equivalence (slide 163) . . . . . . . . . . . . 22 Examples for Myhill-Nerode equivalence (slides 164, 168) . . . . . . . . . . . . . . . . . 22 Proving Non-Regularity with the Theorem of Myhill–Nerode (slide 170) . . . . . . . . . 23 1

  2. 7 Closure Properties and Decision Procedures 24 Construction of the Complement Automaton (slide 185) . . . . . . . . . . . . . . . . . . 24 Example Cross Product Construction (slide 188) . . . . . . . . . . . . . . . . . . . . . . 24 8 Program verification: Mutual Exclusion 25 Mutual Exclusion: First Attempt (slide 211) . . . . . . . . . . . . . . . . . . . . . . . . 25 Attempt 1: Test with Grail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Attempt 2: Test with Grail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9 Recapitulation of Regular Languages 26 Recapitulation: Three proofs of non-regularity . . . . . . . . . . . . . . . . . . . . . . . 26 10 Context Free Grammars 27 Examples for Context Free Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Removing ǫ -productions (slides 229 and 230) . . . . . . . . . . . . . . . . . . . . . . . . 28 Ambiguous Grammar (slide 237) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Examples for Chomsky -Normal Form (slides 239–244) . . . . . . . . . . . . . . . . . . . 29 11 The CYK Algorithm 32 Notation example (slides 251/252) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CYK Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 12 The Pumping Lemma for Context Free Languages 33 Example for the Pumping Mechanism (slide 264) . . . . . . . . . . . . . . . . . . . . . . 33 Pumping Lemma Examples (slide 269) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 13 Kellerautomaten 36 Why an Automaton Model for Context Free Languages? (slide 270) . . . . . . . . . . . 36 To slide 271 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Meaning of the Transition Function of a Push-Down Automaton (slides 277–278) . . . . 36 Notation of the Transition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Push-Down Automaton Example 1 (slide 287) . . . . . . . . . . . . . . . . . . . . . . . . 37 To slide 273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Example Push-Down Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Context Free Grammar → PDA (slide 295/296) . . . . . . . . . . . . . . . . . . . . . . . 41 PDA → Context Free Grammar (slides 298–307) . . . . . . . . . . . . . . . . . . . . . . 42 14 Closure Properties and Algorithms for Context Free Languages 43 Push-Down Automata with Final States (slide 272) . . . . . . . . . . . . . . . . . . . . . 43 Closure Under Union (slide 275) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Closure Under Product (slide 276) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Closure Under the Star Operation (slide 277) . . . . . . . . . . . . . . . . . . . . . . . . 45 Closure Under Intersection (slide 278) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Example Cross Product Construction NFA/PDA (slide 279,280) . . . . . . . . . . . . . 45 To slide 283 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 15 Generating a Parser with JavaCC 47 EBNF-Form (slides 308–309) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Invoking ANTLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2

  3. 1 Mathematical foundation and formal proofs Venn diagrams (slide 29) In the top diagram of slide 29 to sets are shown: A and B . One element of A , which is not an element of B , is explicitly represented. Whether B has elements (and whether there are objects, which are both element of A and of B ) is not explicitly stated. In the second diagram A is a subset of B . Examples to set operations (slide 30) Let A = { 1 , 3 , 5 } und B = { 2 , 3 , 4 } . It holds that A ∪ B = { 1 , 2 , 3 , 4 , 5 } A ∩ B = { 3 } A \ B = { 1 , 5 } B \ A = { 2 , 4 } Examples to the power set (slide 31) � � P ( { a, b } ) = ∅ , { a } , { b } , { a, b } � � P ( { 1 , 2 , 3 } ) = ∅ , { 1 } , { 2 } , { 3 } , { 1 , 2 } , { 1 , 3 } , { 2 , 3 } , { 1 , 2 , 3 } P ( P ( ∅ )) = P ( { ∅ } ) = { ∅ , { ∅ }} Note: for all sets A it is the case, that ∅ ⊆ A and A ⊆ A . That means, that it is always the case, that ∅ ∈ P ( A ) and A ∈ P ( A ). Examples to the cross product (slide 33) { 1 , 3 } × { 2 , 4 } = { (1 , 2) , (1 , 4) , (3 , 2) , (3 , 4) } { a, b, c } × { 1 } = { ( a, 1) , ( b, 1) , ( c, 1) } A × ∅ = ∅ (f¨ ur alle Mengen A ) Examples to the properties of relations (slides 35 and 37) c c c c a a a a (a) (b) (c) (d) b b b b d d d d Relation (a) is reflexive , transitive and symmetric . It is therefore a quasi-order and an equivalence relation . The relation is not anti-symmetric and therefore not an order . Relation (b) is symmetric . (It has none of the other properties.) Relation (c) is transitive and antisymmetric . (It has none of the other properties.) Relation (d) is transitive and antisymmetric . (It has none of the other properties.) More examples for orders and equivalence relations: 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend