on the parikh images of level two pushdown automata
play

On the Parikh Images of Level-Two Pushdown Automata Wong Karianto - PowerPoint PPT Presentation

15. Theorietag Automaten und Formale Sprachen Lauterbad, 2829 September 2005 On the Parikh Images of Level-Two Pushdown Automata Wong Karianto karianto@informatik.rwth-aachen.de Lehrstuhl f ur Informatik VII Motivations Correspondence


  1. 15. Theorietag Automaten und Formale Sprachen Lauterbad, 28–29 September 2005 On the Parikh Images of Level-Two Pushdown Automata Wong Karianto karianto@informatik.rwth-aachen.de Lehrstuhl f¨ ur Informatik VII

  2. Motivations Correspondence between automata (and formal language) theory and number theory: RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 2

  3. Motivations Correspondence between automata (and formal language) theory and number theory: Automata theory Number theory (Parikh mapping) finite automata, ✲ semi-linear sets pushdown automata RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 2

  4. Motivations Correspondence between automata (and formal language) theory and number theory: Automata theory Number theory (Parikh mapping) finite automata, ✲ semi-linear sets pushdown automata higher-order pushdown ✲ ??? automata ( HOPDA ) HOPDA: finite-state automata with a stack of stacks of . . . of stacks RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 2

  5. Motivations Correspondence between automata (and formal language) theory and number theory: Automata theory Number theory (Parikh mapping) finite automata, ✲ semi-linear sets pushdown automata higher-order pushdown ✲ ??? automata ( HOPDA ) HOPDA: finite-state automata with a stack of stacks of . . . of stacks In this talk: HOPDA of level 2 ( 2-PDA ) Two questions for a class characterizing the Parikh images of 2-PDA’s: � Can all sets from this class be generated (via the Parikh mapping)? � Does the Parikh image of each 2-PDA belong to this class? RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 2

  6. Outline � Semi-linear sets and Parikh’s theorem � Level 2 pushdown automata � Semi-polynomial sets � From semi-polynomial sets to 2-PDA’s � From 2-PDA’s to semi-polynomial sets? � Conclusions RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 3

  7. Semi-Linear Sets A ⊆ N n linear : A = { ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m | k 1 , . . . , k m ∈ N } � ∈ N n for some ¯ x 0 , ¯ x 1 , . . . , ¯ x m � �� ✕ ✁ ✁ ❆ ❑ ✁ ❆ constant vector periods Semi-linear set : finite union of linear sets. Example: B := { ( x 1 , x 2 , x 3 ) ∈ N 3 | x 1 < x 2 < x 3 } is linear: { (0 , 1 , 2) + k 1 (0 , 0 , 1) + k 2 (0 , 1 , 1) + k 3 (1 , 1 , 1) | k 1 , k 2 , k 3 ∈ N } . RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 4

  8. Semi-Linear Sets A ⊆ N n linear : A = { ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m | k 1 , . . . , k m ∈ N } � ∈ N n for some ¯ x 0 , ¯ x 1 , . . . , ¯ x m � �� ✕ ✁ ✁ ❆ ❑ ✁ ❆ constant vector periods Semi-linear set : finite union of linear sets. Example: B := { ( x 1 , x 2 , x 3 ) ∈ N 3 | x 1 < x 2 < x 3 } is linear: { (0 , 1 , 2) + k 1 (0 , 0 , 1) + k 2 (0 , 1 , 1) + k 3 (1 , 1 , 1) | k 1 , k 2 , k 3 ∈ N } . Properties of semi-linear sets: � effective closure under Boolean operations [Ginsburg & Spanier] � equivalence to Presburger-definable sets [Ginsburg & Spanier] RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 4

  9. Parikh Mapping and Parikh’s Theorem Σ = { a 1 , . . . , a n } � Parikh mapping Φ: Σ ∗ → N n Φ( w ) := ( | w | a 1 , . . . , | w | a n ) . � Φ( w ) : the Parikh image of w � Φ( L ) := { Φ( w ) | w ∈ L } ⊆ N n : the Parikh image of L RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 5

  10. Parikh Mapping and Parikh’s Theorem Σ = { a 1 , . . . , a n } � Parikh mapping Φ: Σ ∗ → N n Φ( w ) := ( | w | a 1 , . . . , | w | a n ) . � Φ( w ) : the Parikh image of w � Φ( L ) := { Φ( w ) | w ∈ L } ⊆ N n : the Parikh image of L Theorem (Parikh (1961)): The Parikh image of any context-free language is effectively semi-linear. RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 5

  11. Higher-Order Pushdown Automata � Finite-state automata augmented with a nested pushdown stack, i.e., a stack of stacks of . . . stacks � Level n HOPDA: n -fold nested stacks RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 6

  12. Higher-Order Pushdown Automata � Finite-state automata augmented with a nested pushdown stack, i.e., a stack of stacks of . . . stacks � Level n HOPDA: n -fold nested stacks � Background: ◮ Maslov (1976): Formal definition; correspondence with generalized indexed languages ◮ Damm and Goerdt (1982): automaton characterization of the OI hierarchy ◮ Engelfriet (1983): correspondence to complexity classes ◮ Carayol and W¨ ohrle (2003): correspondence to a hierarchy of infinite graphs introduced by Caucal RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 6

  13. Level 2 PDA Stack alphabet Γ with initial symbol ⊥ : � Level 1 stack (1-stack): [ Z m · · · Z 1 ] ; Z m is the topmost symbol. � Level 2 stack (2-stack): [ s r , . . . , s 1 ] , where s 1 , . . . , s r are 1-stacks, and s r is the topmost 1-stack. � Empty level 2 stack [[ ε ]] ; initial level 2 stack [[ ⊥ ]] . RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 7

  14. Level 2 PDA Stack alphabet Γ with initial symbol ⊥ : � Level 1 stack (1-stack): [ Z m · · · Z 1 ] ; Z m is the topmost symbol. � Level 2 stack (2-stack): [ s r , . . . , s 1 ] , where s 1 , . . . , s r are 1-stacks, and s r is the topmost 1-stack. � Empty level 2 stack [[ ε ]] ; initial level 2 stack [[ ⊥ ]] . � Instructions on 1-stacks: push and pop � Instructions on level 2 stacks: ◮ push and pop on the topmost 1-stack ◮ copy the topmost 1-stack ◮ remove the topmost 1-stack � Access: only to the topmost symbol of the topmost 1 -stack ! RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 7

  15. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ Z 2 k ⊥ ]] RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  16. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ Z 2 Z 2 k ⊥ ]] RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  17. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ Z 2 Z 2 k ⊥ ] , [ Z 2 Z 2 k ⊥ ]] RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  18. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ ZZ 2( k − 1) ⊥ ] , Z 2 k [ Z 2 ⊥ ]] RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  19. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ Z ⊥ ] , [ ZZZ ⊥ ] , [ ZZZZZ ⊥ ] , . . . Z 2( k − 1) [ Z ⊥ ] , Z 2 k [ Z 2 ⊥ ]] Number of Z ’s above Z 2 : � k − 1 i =0 (2 i + 1) = k 2 RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  20. Example: A Non-Semi-Linear Language L quad := { a k b k 2 | k ∈ N } ⊆ { a, b } ∗ Take Γ := {⊥ , Z, Z 2 } and process input a k b k 2 as follows: [[ Z ⊥ ] , [ ZZZ ⊥ ] , [ ZZZZZ ⊥ ] , . . . Z 2( k − 1) [ Z ⊥ ] , Z 2 k [ Z 2 ⊥ ]] Number of Z ’s above Z 2 : � k − 1 i =0 (2 i + 1) = k 2 Φ( L quad ) = { ( x 1 , x 2 ) ∈ N 2 | x 2 1 = x 2 } = ⇒ not semi-linear (proof by growth rate arguments) RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 8

  21. Semi-Polynomial Sets � A ⊆ N n linear: ¯ x ∈ A iff k 1 , . . . , k m ∈ N exist such that x = ¯ ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m . RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 9

  22. Semi-Polynomial Sets � A ⊆ N n linear: ¯ x ∈ A iff k 1 , . . . , k m ∈ N exist such that x = ¯ ¯ x 0 + k 1 ¯ x 1 + . . . + k m ¯ x m . � Replace the vectors with their components: x = ( x 01 , . . . , x 0 n ) + ( k 1 x 11 , . . . , k 1 x 1 n ) + . . . + ( k m x m 1 , . . . , k m x mn ) ¯ and replace linear terms k i x ij with polynomial ones . RWTH Aachen – Wong Karianto On the Parikh Images of Level-Two Pushdown Automata – p. 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend