operational state complexity under parikh equivalence
play

Operational State Complexity under Parikh Equivalence Giovanna - PowerPoint PPT Presentation

Operational State Complexity under Parikh Equivalence Giovanna Lavado 1 Giovanni Pighizzini 1 Shinnosuke Seki 2 , 3 1 Dipartimento di Informatica, Universit` a degli Studi di Milano Helsinki Institute for Information Technology (HIIT) 2 3


  1. Operational State Complexity under Parikh Equivalence Giovanna Lavado 1 Giovanni Pighizzini 1 Shinnosuke Seki 2 , 3 1 Dipartimento di Informatica, Universit` a degli Studi di Milano Helsinki Institute for Information Technology (HIIT) 2 3 Department of Information and Computer Science, Aalto University ICTCS 2014 Universit` a degli Studi di Perugia, Italy September 17-19, 2014 G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  2. Standard equivalence: nfa s vs dfa s Subset construction [Rabin&Scott ’59] nfa dfa 2 n states ⇒ n states = L L Moreover, this state bound cannot be reduced [Meyer&Fischer ’71, Moore ’71] What happens if we do not care of the order of symbols in the strings? This problem is related to the concept of Parikh equivalence [Parikh ’66] G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  3. Standard equivalence: nfa s vs dfa s Subset construction [Rabin&Scott ’59] nfa dfa 2 n states ⇒ n states = L L Moreover, this state bound cannot be reduced [Meyer&Fischer ’71, Moore ’71] What happens if we do not care of the order of symbols in the strings? This problem is related to the concept of Parikh equivalence [Parikh ’66] G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  4. Parikh equivalence: preliminaries Σ = { a 1 , . . . , a m } alphabet of m symbols | w | a be the number of occurrences of a in w ∈ Σ ∗ Parikh map The Parikh map ψ : Σ ∗ → N m associates with a word w ∈ Σ ∗ the m -dimensional nonnegative vector ( | w | a 1 , | w | a 2 , . . . , | w | a m ) . Parikh image The Parikh image of a language L is ψ ( L ) = { ψ ( w ) | w ∈ L } . w 1 = π w 2 iff ψ ( w 1 ) = ψ ( w 2 ) L 1 = π L 2 iff ψ ( L 1 ) = ψ ( L 2 ) G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  5. Parikh equivalence: Parikh’s theorem Theorem ([Parikh ’66]) For each context-free language L ⊆ Σ ∗ , there exists a Parikh equivalent regular language R ⊆ Σ ∗ . Example ( L = π R ) L = { a n b n | n ≥ 0 } R = ( ab ) ∗ and have the same Parikh image, namely the set { ( n , n ) | n ≥ 0 } G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  6. From nfa s to Parikh equivalent dfa s We have the following Parikh equivalent conversion: Theorem ( nfa to dfa ) nfa dfa √ ⇒ π n · ln n ) states e O ( n states = L 1 L 2 Moreover, this cost is tight. Quite surprisingly: Polynomial conversion If the given nfa accepts only nonunary strings then the cost reduces to a polynomial in n . G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  7. From nfa s to Parikh equivalent dfa s We have the following Parikh equivalent conversion: Theorem ( nfa to dfa ) nfa dfa √ ⇒ π n · ln n ) states e O ( n states = L 1 L 2 Moreover, this cost is tight. Quite surprisingly: Polynomial conversion If the given nfa accepts only nonunary strings then the cost reduces to a polynomial in n . G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  8. Our Goal We investigate, under Parikh equivalence, the state complexity of some language operations which preserve regularity ( ∪ , ∩ , c , · , ∗ , ✁ , R , P Σ 0 ). Problem ( dfa s to dfa ) A, B dfa s C dfa ⇒ π n 1 , n 2 states L ( C ) = π L = L ( A ) , L ( B ) how many states? where: L = L ( A ) ∪ L ( B ) L = L ( A ) ∩ L ( B ) L = L ( A ) L ( B ) ... G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  9. Standard equivalence: concatenation A , B dfa s C dfa ⇒ 2 n 1 + n 2 states n 1 , n 2 states = L ( A ) L ( B ) L ( C ) = L ( A ) L ( B ) In the worst case: ( 2 n 1 − 1 ) 2 n 2 − 1 states [Yu ’00] Under Parikh equivalence we reduce this bound. G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  10. Standard equivalence: concatenation A , B dfa s C dfa ⇒ 2 n 1 + n 2 states n 1 , n 2 states = L ( A ) L ( B ) L ( C ) = L ( A ) L ( B ) In the worst case: ( 2 n 1 − 1 ) 2 n 2 − 1 states [Yu ’00] Under Parikh equivalence we reduce this bound. G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  11. Concatenation under Parikh equivalence One of our contribution Problem ( dfa s to dfa ) A, B dfa s C dfa ⇒ π n 1 , n 2 states L ( C ) = π L = L = L ( A ) L ( B ) how many states? √ n · ln n , where n = n 1 + n 2 Upper bound: e by Parikh equivalent conversion Lower bound: n 1 n 2 states by unary case [Yu ’00] G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  12. Unary and nonunary parts of a language a 1 a 1 a 2 q p a 2 Nonunary part: Unary parts: a 1 a 1 [ p , 1 ] [ q , 1 ] a 2 q a 1 a 1 a 1 a 2 q 0 a 2 a 2 [ q , 2 ] q p a 2 a 1 q p a 2 [ p , 2 ] a 2 a 1 a 2 L ( A ) = � m i = 0 L ( A i ) G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  13. Concatenation under Parikh equivalence: proof idea dfa s A , B n 1 , n 2 states L = L ( A ) L ( B ) Σ = { a 1 , . . . , a m } G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  14. Concatenation under Parikh equivalence: proof idea ∀ i = 1 . . . m A i , O ( n 1 ) states B i , O ( n 2 ) states unary � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) Σ = { a 1 , . . . , a m } G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  15. Concatenation under Parikh equivalence: proof idea ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m = A i , O ( n 1 ) states dfa M i B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) unary O ( n 1 n 2 ) states [Yu ’00] � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) Σ = { a 1 , . . . , a m } G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  16. Concatenation under Parikh equivalence: proof idea ⇒ ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m dfa M ′ = = A i , O ( n 1 ) states dfa M i L ( M ′ ) = � m i = 1 L ( M i ) B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) poly ( n 1 , n 2 ) states unary O ( n 1 n 2 ) states [Yu ’00] � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) Σ = { a 1 , . . . , a m } G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  17. Concatenation under Parikh equivalence: proof idea ⇒ ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m dfa M ′ = = A i , O ( n 1 ) states dfa M i L ( M ′ ) = � m i = 1 L ( M i ) B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) poly ( n 1 , n 2 ) states unary O ( n 1 n 2 ) states [Yu ’00] � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) ❅ Σ = { a 1 , . . . , a m } ❅ ❅ nonunary nfa M L ( M ) = L n 1 + n 2 states G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  18. Concatenation under Parikh equivalence: proof idea ⇒ ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m dfa M ′ = = A i , O ( n 1 ) states dfa M i L ( M ′ ) = � m i = 1 L ( M i ) B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) poly ( n 1 , n 2 ) states unary O ( n 1 n 2 ) states [Yu ’00] � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) ❅ Σ = { a 1 , . . . , a m } ❅ ❅ nonunary nfa M 0 ⇒ nfa M L \ L ( M ′ ) = L ( M ) = L ( n 1 + n 2 )( m + 1 )+ 1 n 1 + n 2 states states G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  19. Concatenation under Parikh equivalence: proof idea ⇒ ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m dfa M ′ = = A i , O ( n 1 ) states dfa M i L ( M ′ ) = � m i = 1 L ( M i ) B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) poly ( n 1 , n 2 ) states unary O ( n 1 n 2 ) states [Yu ’00] � dfa s A , B � n 1 , n 2 states � L = L ( A ) L ( B ) ❅ Σ = { a 1 , . . . , a m } ❅ ❅ Parikh equivalent conversion nonunary nfa M 0 ⇒ π ⇒ nfa M dfa M ′ L \ L ( M ′ ) = = 0 L ( M ) = L poly ( n 1 , n 2 ) ( n 1 + n 2 )( m + 1 )+ 1 states n 1 + n 2 states states G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

  20. Concatenation under Parikh equivalence: proof idea ⇒ ⇒ ∀ i = 1 . . . m ∀ i = 1 . . . m dfa M ′ = = A i , O ( n 1 ) states dfa M i L ( M ′ ) = � m i = 1 L ( M i ) B i , O ( n 2 ) states L ( M i ) = L ( A i ) L ( B i ) poly ( n 1 , n 2 ) states unary O ( n 1 n 2 ) states [Yu ’00] � ❅ dfa s A , B � dfa C ❅ n 1 , n 2 states � ❅ poly ( n 1 , n 2 ) L = L ( A ) L ( B ) ❅ � states Σ = { a 1 , . . . , a m } � ❅ ❅ Parikh equivalent conversion � nonunary nfa M 0 ⇒ π ⇒ nfa M dfa M ′ L \ L ( M ′ ) = = 0 L ( M ) = L poly ( n 1 , n 2 ) ( n 1 + n 2 )( m + 1 )+ 1 states n 1 + n 2 states states G.J. Lavado, G. Pighizzini, S. Seki Operational State Complexity under Parikh Equivalence

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend