at lep the hl lhc and future lepton colliders
play

at LEP, the (HL)LHC and future lepton colliders . Elina Fuchs - PowerPoint PPT Presentation

Hunting relaxions and light (pseudo)scalars at LEP, the (HL)LHC and future lepton colliders . Elina Fuchs Weizmann Institute of Science, Israel [1610:02025] Flacke, Frugiuele, EF, Gupta, Perez [1807.10842] Frugiuele, EF, Perez, Schlaffer Beyond


  1. Hunting relaxions and light (pseudo)scalars at LEP, the (HL)LHC and future lepton colliders . Elina Fuchs Weizmann Institute of Science, Israel [1610:02025] Flacke, Frugiuele, EF, Gupta, Perez [1807.10842] Frugiuele, EF, Perez, Schlaffer Beyond Standard Model: Where do we go from here? GGI Firenze , August 28, 2018

  2. Challenges for naturalness at the TeV-scale ◮ symmetry-based theories of naturalness: New Physics ∼ TeV e.g. SUSY, composite Higgs ◮ under pressure by null-results at LHC how much tuning acceptable? still some blind spots survive ◮ novel ideas for naturalness with light NP instead of symmetry protection of Higgs mass: dynamical evolution � Relaxion Elina Fuchs (Weizmann) | Relaxion at colliders | 1

  3. Outline 1 Introduction: relaxion for naturalness 2 Relaxion phenomenology 3 Relaxion searches Precision probes Direct searches Elina Fuchs (Weizmann) | Relaxion at colliders | 1

  4. I. Brief introduction: relaxion for naturalness

  5. Relaxion mechanism [Graham, Kaplan, Rajendran ’15] V ( H ) = µ 2 ( φ ) H † H + λ ( H † H ) 2 V ( φ ) = rg Λ 3 φ + ... µ 2 ( φ ) = − Λ 2 + g Λ φ scans m h during inflation 1. φ ≥ Λ /g ⇒ µ 2 > 0 , no vev 2. φ < Λ /g ⇒ µ 2 < 0 , sign flip, EWSB Elina Fuchs (Weizmann) | Relaxion at colliders | 2

  6. Relaxion mechanism [Graham, Kaplan, Rajendran ’15] V ( H ) = µ 2 ( φ ) H † H + λ ( H † H ) 2 V ( φ ) = rg Λ 3 φ + ... µ 2 ( φ ) = − Λ 2 + g Λ φ scans m h during inflation 1. φ ≥ Λ /g ⇒ µ 2 > 0 , no vev 2. φ < Λ /g ⇒ µ 2 < 0 , sign flip, EWSB � � φ 3. backreaction V br = Λ 4 br cos f 4. φ ց ⇒ | µ 2 ( φ ) | , v 2 ր ⇒ ∆ V br ր 5. until φ stopped by sufficient barrier Elina Fuchs (Weizmann) | Relaxion at colliders | 2

  7. Relaxion models (examples) ◮ minimal model: QCD (rel)axion, √ Λ 4 br = 4 πf 3 π y u v/ 2 � θ QCD × ◮ non-QCD strong sector, √ Λ 4 br ≃ yv ′ 3 v H / 2 ◮ double-field mechanism ( φ, σ ) [Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant ’15] ◮ familon (PNGB of spontaneously broken flavour symmetry) with vector-like leptons in the backreaction sector [Gupta, Komargodski, Perez, Ubaldi ’15] backreaction sector and ◮ friction via particle production scale Λ br model-dependent [Hook, Marques-Tavares ’16] ◮ ... Elina Fuchs (Weizmann) | Relaxion at colliders | 3

  8. II. Relaxion Phenomenology

  9. Relaxion-Higgs mixing [Flacke, Frugiuele, EF, Gupta, Perez ’16] [Choi, Im ’16] √ j ≡ r 4 br = ˜ considering Λ 4 M 4 − j v j / br v 4 , here j = 2 (non-QCD) 2 minimum of V ( φ, h ) : ( φ 0 , v = 246 GeV ) , φ 0 : endpoint of rolling, s 0 ≡ sin ( φ 0 /f ) can be O (1) or smaller Mixing term in the relaxion-Higgs potential � � ˜ M 4 − j v j − 1 φ 0 V ( φ, h ) ⊃ sin hφ → diagonalise √ j f f 2 V ( h, φ ) ⊃ hφ : Measurable consequences of relaxion-Higgs mixing? Elina Fuchs (Weizmann) | Relaxion at colliders | 4

  10. Relaxion properties I: mass & mixing Relaxion mass 100.000 � m φ ≃ r 2 br v 2 c 0 − 16 r 4 br s 2 f = 10 3 GeV 0 f 0.001 f ≤ 2 m φ v 10 6 GeV sin θ ≃ 8 r 4 br s 0 ˜ > M M v M ϕ [ GeV ] 10 - 8 10 9 GeV ˜ max (for f ≫ r 2 br v , 16 r 4 br s 2 0 ≪ c 0 ) 10 12 GeV 10 - 13 10 15 GeV 10 18 GeV 10 - 18 0.001 0.010 0.100 1 10 100 ˜ [ GeV ] M Elina Fuchs (Weizmann) | Relaxion at colliders | 5

  11. Relaxion properties I: mass & mixing Relaxion mass 100.000 � m φ ≃ r 2 br v 2 c 0 − 16 r 4 br s 2 f = 10 3 GeV 0 f 0.001 f ≤ 2 m φ v 10 6 GeV sin θ ≃ 8 r 4 br s 0 ˜ > M M v M ϕ [ GeV ] 10 - 8 10 9 GeV ˜ max (for f ≫ r 2 br v , 16 r 4 br s 2 0 ≪ c 0 ) 10 12 GeV 10 - 13 10 15 GeV "Relaxion line": maximal mixing 10 18 GeV 10 - 18 depends linearly on mass 0.001 0.010 0.100 1 10 100 ˜ [ GeV ] M Elina Fuchs (Weizmann) | Relaxion at colliders | 5

  12. Relaxion properties II: lifetime [Clarke, Foot, Volkas ’13] [Flacke, Frugiuele, EF, Gupta, Perez ’16] Relaxion lifetime ⊲ threshold effects 10 17 s 10 17 10 13 s had - pert ⊲ cτ φ ∝ (sin θ ) − 2 e μ π c τ 10 7 10 6 s ⊲ displaced vertex? 1 s τ ϕ [ s ] ⊲ decay outside detector? 10 - 3 sin 2 θ c τ = 2m ⊲ cosmological time scales? 1 10 - 13 10 - 3 10 - 6 φ possibly long-lived 10 - 9 10 - 23 10 - 6 10 - 4 0.01 1 m ϕ [ GeV ] Elina Fuchs (Weizmann) | Relaxion at colliders | 6

  13. Relaxion couplings to SM: CP -even and -odd CP -even g hX = sin θ g hX , X = f ¯ f, V V Relaxion inherits SM Higgs couplings suppressed by mixing ⇔ Higgs portal (applicable to other light-scalar models) CP -odd � ˜ φ c γγ F µν + ˜ c Zγ F µν + ˜ c ZZ 4 F µν � 2 Z µν � 4 Z µν � Z µν L ⊃ 4 π f � +˜ c WW W µν + ˜ c GG W µν � 4 G µν � G µν 4 c model-dependent: backreaction sector ˜ Elina Fuchs (Weizmann) | Relaxion at colliders | 7

  14. III. Relaxion Searches

  15. Status ( CP -even interaction) LEP - 2 FCCee K →π + inv B → K μμ - 4 CHARM Log 10 [ sin θ ] HB SN 1987A S H - 6 I P τ = 1s - 8 r τ u i n h → unt LHC1 m i v e r i RG s s e a C - 10 max mix FCCee = τ 1 0 2 6 s - 12 0 2 4 6 8 10 Log 10 [ m ϕ / eV ] 5th force astro cosmo meson decays beam dump lepton collider LHC Relaxion mass and mixing span many orders of magnitude Elina Fuchs (Weizmann) | Relaxion at colliders | 8

  16. Precision probes ◮ Higgs couplings sensitivity to BR ( h → NP) ? deviation from self-coupling λ ? ◮ Z total width? Elina Fuchs (Weizmann) | Relaxion at colliders | 9

  17. New decay mode of the Higgs invisible and untagged final states Γ NP = Γ inv + Γ unt h h h total Higgs width Γ h = κ 2 Γ SM + Γ NP h h φ h c hφφ φ relaxion: 2 parameters → fit (as SM+singlet) ◮ BR ( h → NP) = BR ( h → unt) = BR ( h → φφ ) (GeV-scale relaxion decays inside detector) ◮ κ ≡ cos θ : universal coupling modifier Elina Fuchs (Weizmann) | Relaxion at colliders | 10

  18. Triple-scalar coupling hφφ c φφh = r 4 br v 3 θ − 2 r 4 br v 2 θ s θ − r 4 br v 4 θ s θ − 2 r 4 br v 3 θ + r 4 br v 2 f 2 c 0 c 3 s 0 c 2 2 f 3 s 0 c 2 c 0 c θ s 2 θ + 3 vλc θ s 2 s 0 s 3 θ f f 2 f → r 4 br v 3 θ ≃ m 2 θ → 0 φ f 2 c 0 c 3 − v where s 0 , c 0 ≡ sin , cos ( φ 0 /f ) Untagged Higgs decays ◮ Global Higgs coupling fits allow (under model assumptions) to bound BR( h → NP), in particular h → untagged ⇒ bound on g hφφ containing term ∝ cos 3 θ ◮ here h → φφ = � does not vanish at θ → 0 expect sin θ -independent bound on m φ for θ → 0 : relaxion-specific Elina Fuchs (Weizmann) | Relaxion at colliders | 11

  19. Upper bounds on BR ( h → NP) ◮ BR ( h → inv) available for all colliders ◮ BR ( h → NP) often not available for suitable assumptions Estimate via precision of couplings ◮ κ Z most precise → approximation of global κ ◮ rates constrain combination of κ and BR ( h → NP) � 1 − n · δ κ � 2 BR ( h → NP) ≤ 1 − κ Conservative estimate; 2-parameter fit would be stronger than multi- κ Elina Fuchs (Weizmann) | Relaxion at colliders | 12

  20. Higgs self-coupling λ λ ≃ f 2 − 4 r 4 c 0 + 16 r 4 br s 2 v 2 � � br 0 8 ( f 2 − 4 c 0 r 4 br v 2 ) [Di Vita, Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon ’17] ◮ HL-LHC, FCCee, CLIC, ILC may reach a sensitivity of 10 − 50% [Di Vita et al ’17, Abramowicz et al ’16] ◮ relaxion-induced deviations from SM prediction < 10% for sin 2 θ < 0 . 1 = ⇒ too small to be resolved Elina Fuchs (Weizmann) | Relaxion at colliders | 13

  21. Z precision measurements Precision measurements at the Z -pole = Γ( Z → φf ¯ ◮ relaxion opens NP contribution: Γ NP f ) Z ◮ bounded by δ Γ LEP1 = 2 . 3 MeV → δ Γ TeraZ = 0 . 1 MeV [Bicer et al ’14] Z Z ◮ � theory improvement needed: Z = 0 . 5 MeV → δ Γ th , 3loop δ Γ th = 0 . 2 MeV [Freitas ’14] Z Elina Fuchs (Weizmann) | Relaxion at colliders | 14

  22. Resulting indirect bounds ◮ Z and Higgs precision measurements ◮ lepton colliders powerful h → untagged: bound on mass independent of sin θ for small mixing Elina Fuchs (Weizmann) | Relaxion at colliders | 15

  23. Direct probes: φ production as a light Higgs gg Production at the LHC 1000 W ϕ Z ϕ ◮ pp → φ (gg) 100 tt ϕ bb ϕ ◮ pp → Zφ, Wφ VBF 10 tφ, b ¯ ◮ pp → t ¯ σ [ pb ] bφ 1 ◮ pp → φjj (VBF) 0.100 0.010 Production at lepton colliders ◮ e + e − → Zφ 0.001 20 40 60 80 100 ◮ Z → Z ∗ φ , Z ∗ → ff m ϕ [ GeV ] Hadronic cross sections at 13 TeV (solid) measurements at and above Z -pole and leptonic ones at 240 GeV (dashed) for sin 2 θ = 1 . Elina Fuchs (Weizmann) | Relaxion at colliders | 16

  24. Branching ratios 1 bb cc 0.100 ττ μμ γγ 0.010 BR ϕ 0.001 10 - 4 10 - 5 5 10 50 100 m ϕ [ GeV ] exploit all final states: suitable at lepton/hadron colliders Elina Fuchs (Weizmann) | Relaxion at colliders | 17

  25. Searches for exotic Higgs decays h → φφ → XXY Y [e.g. CMS-PAS-HIG-17-024, ATLAS 1802.03388] -1 35.9 fb (13 TeV) ) (%) 25 CMS Observed Observed Median expected Median expected τ 2b2 68% expected 68% expected 95% expected 95% expected Preliminary 20 → aa Combined → B(h 15 (h) SM σ σ 95% CL limit on 10 5 0 15 20 25 30 35 40 45 50 55 60 m (GeV) a ◮ BR ( h → φφ → 4 b ) � O (10 − 3 ) at CEPC with √ s = 240 GeV [Liu. Wang, Zhang ’17] Elina Fuchs (Weizmann) | Relaxion at colliders | 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend