expressibility in the lambda calculus with letrec
play

Expressibility in the Lambda Calculus with letrec Clemens Grabmayer - PowerPoint PPT Presentation

Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 1 Expressibility in the Lambda Calculus with letrec Clemens Grabmayer and Jan Rochel Dept. of Philosophy, and Dept. of Computer Science NWO-project Realising Optimal Sharing


  1. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 1 Expressibility in the Lambda Calculus with letrec Clemens Grabmayer and Jan Rochel Dept. of Philosophy, and Dept. of Computer Science NWO-project Realising Optimal Sharing Utrecht University TeReSe-Meeting RWTH Aachen, 28 March 2012

  2. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 2 Which infinite λ -terms are expressible finitely in λ letrec ? Example letrec f = λ xy . f y x in f λ xy . λ xy . ( λ xy . ( ... y x ) y x ) y x ։ ։ ▽

  3. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 3 Which infinite λ -terms are expressible finitely in λ letrec ? Example letrec f = λ xy . f y x in f λ xy . λ xy . ( λ xy . ( ... y x ) y x ) y x ։ ։ ▽ λ x λ y @ λ x @ λ y x λ x @ ։ ։ ▽ y λ y @ x @ y @ x . . . y

  4. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 4 Which infinite λ -terms are expressible finitely in λ letrec ? Example letrec f = λ xy . f y x in f λ xy . λ xy . ( λ xy . ( ... y x ) y x ) y x ։ ։ ▽ λ x λ a λ y λ b @ λ x @ @ λ y x λ c a λ x ։ β @ ։ ։ ▽ ։ y @ λ y @ x λ d b @ y @ @ x . . . c . . . y

  5. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 5 Which infinite λ -terms are expressible finitely in λ letrec ? Example letrec f = λ xy . f y x in f λ xy . λ xy . ( λ xy . ( ... y x ) y x ) y x ։ ։ ▽ λ x λ a λ y λ b @ λ x λ a @ @ λ y x λ b λ c a ։ λ x ։ β ։ β @ ։ ։ ▽ ։ λ c y @ λ y @ x λ d λ d b . . @ y . @ @ x . . . c . . . y

  6. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 6 Which infinite λ -terms are expressible finitely in λ letrec ? Example letrec f = λ xy . f y x in f λ xy . λ xy . ( λ xy . ( ... y x ) y x ) y x ։ ։ ▽ λ x λ a λ y λ b @ λ x λ a @ @ λ y x λ b λ c a ։ λ x λ x ։ β ։ β @ ։ ։ ▽ ։ λ c և և ▽ y @ λ y @ x λ d λ d b . . @ y . @ @ x . . . c . . . y letrec f = λ x . f in f

  7. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 7 What makes a λ -terms inexpressible in λ letrec ? Example λ a λ b @ λ c a @ λ d b @ . . . c

  8. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 8 What makes a λ -terms inexpressible in λ letrec ? λ a λ b @ λ c a @ λ d b @ . . . c

  9. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 9 What makes a λ -terms inexpressible in λ letrec ? λ a λ λ b λ @ @ λ c a λ @ @ λ d b λ @ @ . . . . . c .

  10. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 10 What makes a λ -terms inexpressible in λ letrec ? λ a λ a λ λ b λ b λ @ @ @ λ c a λ c a λ @ @ @ λ d λ d b b λ @ @ @ . . . . . . . c . c . scope

  11. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 11 What makes a λ -terms inexpressible in λ letrec ? λ a λ a λ a λ λ b λ b λ b λ @ @ @ @ λ c a λ c a λ c a λ @ @ @ @ λ d λ d λ d b b b λ @ @ @ @ . . . . . . . . . c . c . c . scope + scope

  12. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 12 What makes a λ -terms inexpressible in λ letrec ? λ x λ y @ @ x λ x y λ y @ @ x . . . y

  13. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 13 What makes a λ -terms inexpressible in λ letrec ? λ x λ λ y λ @ @ @ x @ λ x y λ λ y λ @ @ @ x @ . . . . y . .

  14. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 14 What makes a λ -terms inexpressible in λ letrec ? λ x λ λ x λ y λ λ y @ @ @ @ x @ @ x λ x y λ λ x y λ y λ λ y @ @ @ @ x @ @ x . . . . . y . . . . y scope

  15. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 15 What makes a λ -terms inexpressible in λ letrec ? λ x λ λ x λ x λ y λ λ y λ y @ @ @ @ @ x @ @ @ x x λ x y λ λ x λ x y y λ y λ λ y λ y @ @ @ @ @ x @ @ @ x x . . . . . . y . . . . . . y y scope + scope

  16. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 16 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous )

  17. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 17 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) ( ρ @ i ) : pre n ([ x 1 ... x n ] app ( Z 0 ( � x ) , Z 1 ( � x ))) → pre n ([ x 1 ... x n ] Z i ( � x )) ( i ∈ { 0 , 1 } ) ( ρ λ ) : pre n ([ x 1 ... x n ] abs ([ x n + 1 ] Z ( � x ))) → pre n ([ x 1 ... x n + 1 ] Z ( � x )) ( ρ S ) : pre n + 1 ([ x 1 ... x n + 1 ] Z ( x 1 ,..., x n )) → pre n ([ x 1 ... x n ] Z ( x 1 ,..., x n ))

  18. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 18 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y

  19. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 19 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ ( λ x ) λ y . x x y

  20. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 20 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ xy ) x x y

  21. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 21 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ xy ) x x y → @ 1 ( λ xy ) y

  22. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 22 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y () λ x . λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ xy ) x x y → @ 1 ( λ xy ) y

  23. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 23 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ () λ x . λ y . x x y → λ ( λ x ) λ y . x x y ( λ x ) λ y . x x y → λ ( λ xy ) x x y → @ 1 ( λ xy ) y

  24. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 24 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ () λ x . λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ xy ) x x y ( λ xy ) x x y → @ 1 ( λ xy ) y

  25. Grabmayer, Rochel Expressibility in the Lambda Calculus with letrec 25 A CRS for observing infinite λ -terms: Reg + ( ρ @ i ) : ( λ x 1 ... x n ) M 0 M 1 → ( λ x 1 ... x n ) M i ( i ∈ { 0 , 1 } ) ( ρ λ ) : ( λ x 1 ... x n ) λ x n + 1 . M 0 → ( λ x 1 ... x n + 1 ) M 0 ( ρ S ) : ( λ x 1 ... x n + 1 ) M 0 → ( λ x 1 ... x n ) M 0 ( if λ x n + 1 is vacuous ) Example ( λ x . λ y . x x y ) () λ x . λ y . x x y → λ () λ x . λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ x ) λ y . x x y → λ ( λ xy ) x x y → @ 0 ( λ xy ) x x y → @ 1 ( λ xy ) x x ( λ xy ) y

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend