asymptotics of robin eigenvalues in domains with corners
play

Asymptotics of Robin eigenvalues in domains with corners Magda - PowerPoint PPT Presentation

Asymptotics of Robin eigenvalues in domains with corners Magda Khalile Institut f ur Analysis, Leibniz Universit at Hannover Joint work with T. Ourmi` eres-Bonafos (Dauphine) and K. Pankrashkin (Orsay) 1/24 The Robin eigenvalue problem


  1. Asymptotics of Robin eigenvalues in domains with corners Magda Khalile Institut f¨ ur Analysis, Leibniz Universit¨ at Hannover Joint work with T. Ourmi` eres-Bonafos (Dauphine) and K. Pankrashkin (Orsay) 1/24

  2. The Robin eigenvalue problem ν Let Ω ⊂ R d , d ≥ 2, be Lipschitz and bounded. For γ > 0, consider − ∆ u = Eu on Ω , Ω ∂u ∂ν = γu on ∂ Ω . 2/24

  3. The Robin eigenvalue problem ν Let Ω ⊂ R d , d ≥ 2, be Lipschitz and bounded. For γ > 0, consider − ∆ u = Eu on Ω , Ω ∂u ∂ν = γu on ∂ Ω . • Behavior of the eigenvalues E as γ → + ∞ ? 2/24

  4. The Robin eigenvalue problem ν Let Ω ⊂ R d , d ≥ 2, be Lipschitz and bounded. For γ > 0, consider − ∆ u = Eu on Ω , Ω ∂u ∂ν = γu on ∂ Ω . • Behavior of the eigenvalues E as γ → + ∞ ? • Influence of the geometry of Ω on the asymptotics ? 2/24

  5. The Robin eigenvalue problem ν Let Ω ⊂ R d , d ≥ 2, be Lipschitz and bounded. For γ > 0, consider − ∆ u = Eu on Ω , Ω ∂u ∂ν = γu on ∂ Ω . • Behavior of the eigenvalues E as γ → + ∞ ? • Influence of the geometry of Ω on the asymptotics ? Variational approach: the Robin Laplacian Q γ Ω is the unique self-adjoint operator in L 2 (Ω) associated with the closed form � � |∇ u | 2 − γ q γ | u | 2 ds, u ∈ H 1 (Ω) . Ω ( u, u ) = Ω ∂ Ω 2/24

  6. The Robin eigenvalue problem ν Let Ω ⊂ R d , d ≥ 2, be Lipschitz and bounded. For γ > 0, consider − ∆ u = Eu on Ω , Ω ∂u ∂ν = γu on ∂ Ω . • Behavior of the eigenvalues E as γ → + ∞ ? • Influence of the geometry of Ω on the asymptotics ? Variational approach: the Robin Laplacian Q γ Ω is the unique self-adjoint operator in L 2 (Ω) associated with the closed form � � |∇ u | 2 − γ q γ | u | 2 ds, u ∈ H 1 (Ω) . Ω ( u, u ) = Ω ∂ Ω ◮ Let n ∈ N be fixed: E n ( Q γ Ω ) − − − − → γ → + ∞ ? 2/24

  7. Motivation: link with Dirichlet Laplacians acting on domains collapsing on metric graphs (1/2) • The min-max principle gives: E n ( Q γ Ω ) → −∞ as γ → + ∞ , in particular E n ( Q γ Ω ) < 0 for γ large enough . 3/24

  8. Motivation: link with Dirichlet Laplacians acting on domains collapsing on metric graphs (1/2) • The min-max principle gives: E n ( Q γ Ω ) → −∞ as γ → + ∞ , in particular E n ( Q γ Ω ) < 0 for γ large enough . • Estimate on the negative eigenvalues → Dirichlet-Neumann bracketing: Ω ǫ := { x ∈ Ω : dist( x, ∂ Ω) < ǫ } with ǫ := ǫ ( γ ) such that ǫ → 0 as γ → + ∞ . ǫ ǫ Robin Robin Robin ≤ ≤ Ω ǫ Ω ǫ Neumann Dirichlet Ω 3/24

  9. Motivation: link with Dirichlet Laplacians acting on domains collapsing on metric graphs (1/2) • The min-max principle gives: E n ( Q γ Ω ) → −∞ as γ → + ∞ , in particular E n ( Q γ Ω ) < 0 for γ large enough . • Estimate on the negative eigenvalues → Dirichlet-Neumann bracketing: Ω ǫ := { x ∈ Ω : dist( x, ∂ Ω) < ǫ } with ǫ := ǫ ( γ ) such that ǫ → 0 as γ → + ∞ . ǫ ǫ Robin Robin Robin ≤ ≤ Ω ǫ Ω ǫ Neumann Dirichlet Ω • Geometrically the problem share some links with Dirichlet Laplacians acting on domains collapsing on metric graphs [Grieser, 2008; Molchanov-Vainberg, 2007; Post, 2005] Ω ε Γ ε − ∆ u = E n ( ǫ ) u on Ω ǫ , ε → 0 u = 0 on ∂ Ω ǫ . ◮ Let n ∈ N be fixed: E n ( ǫ ) − ǫ → +0 ? − − − → 3/24

  10. Motivation: link with Dirichlet Laplacians acting on domains collapsing on metric graphs (2/2) By rescaling, the limit object Ω 0 := lim ǫ → 0 Ω ǫ is: Ω 0 − ∆ D 0 := Dirichlet Laplacian on Ω 0 , N 0 := # spec disc ( − ∆ D 0 ) < + ∞ , ν := inf spec ess ( − ∆ D 0 ) . Asymptotics of Dirichlet eigenvalues on collapsing domains [Grieser, 2008; Molchanov-Vainberg, 2007; Post, 2005] There exists N ≥ N 0 such that for ǫ → 0 there holds (i) for n ∈ { 1 , ..., N } , E n ( ǫ ) = τ n ǫ 2 + O ( e − c/ǫ ) , τ n ∈ (0 , ν ] , c > 0 . (ii) for any j ∈ N , E N + j ( ǫ ) = ν ǫ 2 + µ j + O ( ǫ ) , where the µ j are the eigenvalues of a quantum graph Laplacian acting on Γ with transmission conditions at the vertices. 4/24

  11. Asymptotics of the Robin eigenvalues on smooth domains [Exner-Minakov-Parnovski, 2014; Exner-Minakov, 2014; Pankrashkin-Popoff, 2015;...] Effective operator [Pankrashkin-Popoff, 2016] If ∂ Ω is C 2 , then for any fixed n ∈ N , Ω ) = − γ 2 + E n ( − ∆ ∂ Ω − γK ) + O (log γ ) , as γ → + ∞ , E n ( Q γ where − ∆ ∂ Ω is the Laplace-Beltrami operator acting in L 2 ( ∂ Ω , ds ) and K denotes the sum of the principal curvatures of ∂ Ω. 5/24

  12. Asymptotics of the Robin eigenvalues on smooth domains [Exner-Minakov-Parnovski, 2014; Exner-Minakov, 2014; Pankrashkin-Popoff, 2015;...] Effective operator [Pankrashkin-Popoff, 2016] If ∂ Ω is C 2 , then for any fixed n ∈ N , Ω ) = − γ 2 + E n ( − ∆ ∂ Ω − γK ) + O (log γ ) , as γ → + ∞ , E n ( Q γ where − ∆ ∂ Ω is the Laplace-Beltrami operator acting in L 2 ( ∂ Ω , ds ) and K denotes the sum of the principal curvatures of ∂ Ω. → The study of − ∆ ∂ Ω − γK gives more precise asymptotics. • If ∂ Ω if C 3 then E n ( Q γ Ω ) = − γ 2 − γK max + o ( γ ) where K max := max ∂ Ω K ( s ). • Planar domains admitting a unique non-degenerate point of maximal curvature [Helffer-Kachmar, 2017]: - the eigenfunctions are localized near the maximum, - complete asymptotic expansion of the eigenvalues. • Smooth domains with exactly two points of maximal curvature [Helffer-Kachmar-Raymond, 2017] : tunneling effect induced by the geometry. • Weyl asymptotics [Kachmar-Keraval-Raymond, 2016] : asymptotic distribution of the negative eigenvalues of Q γ Ω . 5/24

  13. The corner domains An example : the cube C d ⊂ R d By separation of variables we have C d ) = − dγ 2 + o ( γ 2 ) , as γ → + ∞ . E 1 ( Q γ 6/24

  14. The corner domains An example : the cube C d ⊂ R d By separation of variables we have C d ) = − dγ 2 + o ( γ 2 ) , as γ → + ∞ . E 1 ( Q γ Definition : the corner domains [Dauge, 1988; Grisvard, 1985] Ω ⊂ R d Lipschitz, piecewise smooth, bounded, and for any y ∈ ∂ Ω, there exists V ( y ) : V ( y ) ∼ U y ∩ B (0 , r ) , r > 0 , where U y ⊂ R d is a cone . 0 U x In R 2 : x → corner domains := curvilinear polygons, 0 y 2 α 2 α → tangent cones := infinite sectors. Ω U y 6/24

  15. Asymptotics of the first Robin eigenvalue on corner domains If Ω ⊂ R d is a corner domain we denote by U y the tangent cone of ∂ Ω in y and Λ( U y , γ ) := inf spec( Q γ Λ( U y , γ ) = γ 2 Λ( U y , 1) . U y ) , 7/24

  16. Asymptotics of the first Robin eigenvalue on corner domains If Ω ⊂ R d is a corner domain we denote by U y the tangent cone of ∂ Ω in y and Λ( U y , γ ) := inf spec( Q γ Λ( U y , γ ) = γ 2 Λ( U y , 1) . U y ) , First order asymptotics [Levitin-Parnovski, 2008; Bruneau-Popoff, 2016] If Ω ⊂ R d is a corner domains, then E 1 ( Q γ Ω ) = C Ω γ 2 + o ( γ 2 ) as γ → + ∞ with C Ω := inf y ∈ ∂ Ω Λ( U y , 1) . → The Robin Laplacians on the tangent cones determine the asymptotics of E 1 ( Q γ Ω ): they play the role of model operators . 7/24

  17. Asymptotics of the first Robin eigenvalue on corner domains If Ω ⊂ R d is a corner domain we denote by U y the tangent cone of ∂ Ω in y and Λ( U y , γ ) := inf spec( Q γ Λ( U y , γ ) = γ 2 Λ( U y , 1) . U y ) , First order asymptotics [Levitin-Parnovski, 2008; Bruneau-Popoff, 2016] If Ω ⊂ R d is a corner domains, then E 1 ( Q γ Ω ) = C Ω γ 2 + o ( γ 2 ) as γ → + ∞ with C Ω := inf y ∈ ∂ Ω Λ( U y , 1) . → The Robin Laplacians on the tangent cones determine the asymptotics of E 1 ( Q γ Ω ): they play the role of model operators . → In R 2 , the model operators are the Robin Laplacians acting on infinite sectors. 7/24

  18. I. Study of the model operators : The Robin Laplacians on infinite sectors • Essential spectrum ? Existence of discrete spectrum ? • Properties of the associated eigenfunctions ? 8/24

  19. Study of the model operators (1/2) x 2 Infinite sector of half-aperture α ∈ (0 , π ) : U α U α := { ( x 1 , x 2 ) ∈ R 2 : | arg( x 1 + ix 2 ) | < α } . ν α Robin Laplacian acting on L 2 ( U α ) : O x 1 α T α := Q 1 U α . First properties: [Levitin-Parnovski, 2008; Bruneau-Popoff, 2016; Kh.-Pankrashkin, 2018] For any α ∈ (0 , π ), spec ess ( T α ) = [ − 1 , + ∞ ). • If α ≥ π 2 , spec( T α ) = [ − 1 , + ∞ ). 1 sin 2 α associated to ϕ α ( x ) = exp( − x 1 • If α < π 2 , E 1 ( T α ) = − sin α ). 9/24

  20. Study of the model operators (2/2) Eigenvalue counting function: N α := # { n ∈ N : E n ( T α ) < − 1 } . Finiteness of the discrete spectrum and behavior as α → 0 [Kh.-Pankrashkin, 2018] • N α < + ∞ for any α > 0. • (0 , π 2 ) ∋ α �→ N α is non-increasing. 6 = 1 and hence for any α ∈ [ π 6 , π • N π 2 ), N α = 1. • N α → + ∞ as α → 0. 10/24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend