asymptotic properties of some random polytopes
play

Asymptotic properties of some random polytopes Pierre Calka INRIA - PowerPoint PPT Presentation

Asymptotic properties of some random polytopes Pierre Calka INRIA Sophia Antipolis, 9 December 2010 default Outline Random convex hulls in the unit-ball Random tessellations in R d . Typical cell Convergence of the boundary and consequences


  1. Asymptotic properties of some random polytopes Pierre Calka INRIA Sophia Antipolis, 9 December 2010

  2. default Outline Random convex hulls in the unit-ball Random tessellations in R d . Typical cell Convergence of the boundary and consequences Joint work with Tomasz Schreiber (Toru´ n University, Poland) and Joseph Yukich (Lehigh University, USA)

  3. default Outline Random convex hulls in the unit-ball Poisson point process Model Historical background Random tessellations in R d . Typical cell Convergence of the boundary and consequences

  4. default Poisson point process �� �� �� �� � Poisson point process of intensity measure µ � � �� �� � :=locally finite set X of R d such that �� �� �� �� � � � � �� �� B 4 ◮ #( X ∩ B 1 ) Poisson r.v. of mean µ ( B 1 ) B 1 � � � � � ◮ #( X ∩ B 1 ) , · · · , #( X ∩ B n ) independent � �� �� �� �� �� �� ( B 1 , · · · , B n ∈ B ( R d ), B i ∩ B j = ∅ , i � = j ) � � B 2 � � B 3 � � If µ = λ d x , X homogeneous of intensity λ � � � �� �� �

  5. default Random convex hulls in the unit-ball ◮ X homogeneous Poisson point process in the unit-ball B d of intensity λ > 0 (resp. set of n independent and uniform points) ◮ Convex hull K λ (resp. K ′ n ) of X

  6. default Historical background Non-asymptotic results ◮ Sylvester (1864): four-point problem 2 35 3 ≤ p C ≤ 1 − 12 π 2 p C := probability that 4 i.i.d. uniform points in a convex set C ⊂ R 2 are extreme d − 1 � n − 1 � ◮ Wendel (1962): P { 0 �∈ K ′ n } = 2 − ( n − 1) � ( n ≥ d ) k k =0 ◮ Efron (1965): f 0 ( · ):= # vertices, V d ( · ):=volume, κ d := V d ( B d ) κ d E f 0 ( K ′ κ d − E V d ( K ′ � � n ) = n n − 1 ) Buchta (2005): identities relating higher moments

  7. default Historical background LLN R´ enyi & Sulanke (1963), Wieacker (1978), Schneider & Wieacker (1980), Schneider (1988) , B´ any & Buchta (1993) ar´ 2 d − 1 κ d − V d ( K λ ) ≈ c d λ − f 0 ( K λ ) ≈ c ′ d +1 , d λ d +1 CLT Reitzner (2005), Vu (2006), Schreiber & Yukich (2008), B´ ar´ any & Reitzner (2009), B´ ar´ any et al. (2009) Aims Description of the boundary of K λ CLT with variance asymptotics

  8. default Outline Random convex hulls in the unit-ball Random tessellations in R d . Typical cell Poisson-Voronoi tessellations Poisson hyperplane tessellations Zero-cell and typical cell Distributional and asymptotic results Connection with random convex hulls Convergence of the boundary and consequences

  9. default Poisson-Voronoi tessellations ◮ X Poisson point process in R d of intensity measure d x ◮ For a nucleus x ∈ X , cell C ( x | X ) := { y ∈ R d : � y − x � ≤ � y − x ′ � ∀ x ′ ∈ X } ◮ Tessellation: set of cells C ( x | X ) Properties : isotropic, stationary, ergodic. References : Descartes (1644), Gilbert (1961), Okabe et al. (1992)

  10. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  11. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  12. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  13. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  14. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  15. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  16. default Poisson hyperplane tessellations ◮ X Poisson point process in R d of intensity measure � x � α − d d x ( α ≥ 1) ◮ For x ∈ X , polar hyperplane H x := { y ∈ R d : � y − x , x � = 0 } ◮ Tessellation: set of connected components of R d \ ∪ x ∈ X H x Properties : isotropic, stationary iff α = 1, ergodic. References : Meijering (1953), Miles (1964), Stoyan et al. (1987)

  17. default Zero-cell and typical cell ◮ Zero-cell: unique cell containing the origin (Crofton cell for a stationary Poisson hyperplane tessellation) ◮ Typical cell: cell C ’chosen uniformly’ among all cells Three equivalent ways to define its distribution: ◮ limits of ergodic means ( Reference : Cowan (1977)) ◮ use of a Palm measure ( Reference : Mecke (1967)) ◮ explicit realization: Poisson-Voronoi tessellation: D C = C (0 | X ∪ { 0 } ) zero-cell of a hyperplane 0 tessellation ( α = d )

  18. default Distributional and asymptotic results ◮ Explicit integral formula for the distribution of the number of hyperfaces and conditional distribution of the cell ◮ D. G. Kendall ’s conjecture (40s): ’when it is large, the zero-cell is close to the spherical shape’. ( Hug , Reitzner & Schneider , 2004) C 0 Particular case: zero-cell conditioned on having R M large inradius R m r 0 ( R M − r )

  19. default Connection with random convex hulls B d 0 R − 1 m C 0 R m := inradius of the zero-cell C 0 of a hyperplane tessellation Effect of the inversion I ( x ) := x / � x � 2 , x � = 0 on R − 1 m C 0 : I ◮ Point process outside B d → point process in B d − I ◮ Line process → Germ-grain process in B d − ◮ Number of hyperfaces of C 0 = number of extreme points in B d

  20. default Outline Random convex hulls in the unit-ball Random tessellations in R d . Typical cell Convergence of the boundary and consequences Radius-vector function and support function Scaling limits Paraboloid growth process Paraboloid hull process Central limit theorems and variance asymptotics Brownian limits Extreme values Dual results for zero-cells of hyperplane tessellations

  21. default Radius-vector function and support function s λ ( v ) B d r λ ( u ) 0 Defect radius-vector function r λ ( u ) := 1 − sup { r > 0 : ru ∈ K λ } , u ∈ S d − 1 Defect support function s λ ( u ) := 1 − sup {� x , u � : x ∈ K λ } = 1 − sup { r > 0 : ru ∈ � x ∈ K λ B ( x / 2 , � x � / 2) }

  22. default Scaling limits B d − → 0 2 1 2 1 d +1 r λ (exp d − 1 ( λ − d +1 r λ (exp d − 1 ( λ − d +1 v )), ˆ d +1 v )) r λ ( v ) := λ ˆ s λ ( v ) := λ ( v ∈ R d − 1 ) exp d − 1 : R d − 1 ≃ T u 0 S d − 1 → S d − 1 exponential map at some fixed u 0 ∈ S d − 1 ˆ r λ and ˆ s λ converge in distribution in ( C ( B d − 1 (0 , R )) , �·� ∞ ), R > 0.

  23. default Paraboloid growth process P := homogeneous Poisson point process on R d − 1 × R + Π ↑ := { ( v , h ) ∈ R d − 1 × R + : h ≥ � v � 2 / 2 } x ∈P ( x + Π ↑ ) Ψ := � The boundary ∂ Ψ is the limit of ˆ s λ .

  24. default Paraboloid hull process P := homogeneous Poisson point process on R × R + Π ↓ := { ( v , h ) ∈ R d − 1 × R + : h ≤ −� v � 2 / 2 } x ∈ R d − 1 × R + : x +Π ↓ ∩P = ∅ ( x + Π ↓ ) Φ := � The boundary ∂ Φ is the limit of ˆ r λ .

  25. default Central limit theorems and variance asymptotics f k ( K λ ) := number of k -faces of K λ V k ( K λ ):= k -th intrinsic volume of K λ (0 ≤ k ≤ d ) λ − d − 1 d +3 d +1 Var [ f k ( K λ )] → σ 2 d +1 Var [ V k ( K λ )] → σ 2 f k and λ V k . ( σ 2 f k , σ 2 V k explicit in terms of Φ and Ψ) f k ( K λ ) and V k ( K λ ) satisfy CLTs with convergence rates. Idea : each quantity can be written � x ∈P λ ξ ( x , P λ ) where ξ ( x , P λ ) = 0 if x not extreme and where ξ ( x , P λ ) depends on P λ only in a vicinity of x .

  26. default Brownian limits B d − → 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend