assessing dsge model nonlinearities
play

"Assessing DSGE Model Nonlinearities " Andrea Prestipino - PowerPoint PPT Presentation

"Assessing DSGE Model Nonlinearities " Andrea Prestipino NYU April 2014 Motivation Identify nonlinearities and evaluate nonlinear DSGE State-space model S t = ( S t 1 ; w t 1 ; ) Y e t = M ( S t ; v t ; )


  1. "Assessing DSGE Model Nonlinearities " Andrea Prestipino NYU April 2014

  2. Motivation � Identify nonlinearities and evaluate nonlinear DSGE – State-space model S t = � ( S t � 1 ; w t � 1 ; � ) Y e t = M ( S t ; v t ; � ) – Statistical model � � Y s Y s t = f t � 1 ; u t � First order approximation – State-space model t = � 1 ( � ) S t � 1 + H ( � ) w t S 1 Y e t = A ( � ) + B ( � ) S t + v t – Statistical model Y s t = CY s t � 1 + u t

  3. Motivation � What reference model for second order approxia- tion? – QAR � How to use this model to evaluate DSGE? – Posterior predictive checks

  4. Quadratic Autoregressive Model (QAR) � Let � � y � y � t = f t � 1 ; !u t where u t � N (0 ; 1) � Second order approximation t + !y (1) + ! 2 y (2) y t = y 0 t t � So that � � y � y � t � � y = f y t � 1 � � y + f u !u t � � 2 + f y;u � � +1 y � y � 2 f y;y t � 1 � � y t � 1 � � y !u t +1 2 f u;u ( !u t ) 2 + higher order terms � Substitute y t and match coe¢cients

  5. QAR � The resulting approximation is t � 1 + (1 + �s t � 1 ) �u t + 1 y ) + � 2 s 2 2 � 3 ! 2 u 2 y t = � 0 + � 1 ( y t � 1 � � t s t = � 1 s t � 1 + �u t � Unique steady state and non-explosive if j � 1 j < 1 � Not true for "standard" approximation y ) 2 y t � � ^ y = � 1 (^ y t � � y ) + � 2 (^ y t � �

  6. Why QAR? � State dependent IRFs � y t + h j u t = 1 � � E t � y t + h � IRF t ( h ) = E t IRF t (0) = � (1 + �s t � 1 ) � � q 1 � � 2 IRF t (1) = � � 1 (1 + �s t � 1 ) + 2 � 1 � 2 1 s t � 1 � Conditional Heteroskedasticity V t � 1 [ y t ] = (1 + �s t � 1 ) 2 � 2

  7. How to use QAR? � Estimate QAR � Estimate 2nd order approximation to DSGE � Use posterior on DSGE parameters to get a posterior predictive distribution on QAR estimates � Check how far the actual QAR estimate lies in the tail of this distribution

  8. QAR: Estimation � Computing � � p ( Y 0: T ; �; s 0 ) = p Y 1: T j y 0 ; s 0 ; � p ( y 0 ; s 0 j � ) p ( � ) � Factorize likelihood T � � � � Y p Y 1: T j y 0 ; s 0 ; � = p y t j y 0: t � 1 ; s 0 ; � t =1 � Computed recursively using p ( y t j y t � 1 ; s t � 1 ) � N s t = g ( y t ; y t � 1 ; s t � 1 )

  9. QAR Estimation � Initialization " # " #! � y � yy � ys p ( y 0 ; s 0 j � ) = N ; � sy � ss � d � Substitute in steady state at t = � T � � Find � � � � � � � � � � � � ; cov ( s 2 s 2 E s j ; E y j ; V s j ; V y j ; cov s j ; y j j ; y j ) ; V j as a function of their lagged values using the QAR law of motions

  10. QAR Estimation � Priors: GDP Growht Wage Growth In‡ation Fed Funds Rate � 0 N ( : 48 ; 2) N (1 : 18 ; 2) N (2 : 38 ; 2) N (2 : 50 ; 2) N T ( : 36 ; : 5) N T ( � : 02 ; : 5) N T (0 : 00 ; : 5) N T (0 : 66 ; : 5) � 1 IG (1 : 42 ; 4) IG ( : 82 ; 4) IG (1 : 87 ; 4) IG ( : 58 ; 4) � � 2 N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) N (0 ; 0 : 1) � � Pre-sample information to parametrize priors

  11. QAR Estimation � RWM Algorithm: � Use prior to get a Cov matrix for parameters � � Produce 100k draws using proposal density ^ � = � t + U t U t � N (0 ; �) � Use last 50k to compute � 0 � Produce 60k draws using new proposal density � 0 ; � 0 � � = � t + U 0 U 0 ^ t � N t

  12. DSGE � New Keynesian DSGE with asymmetric price and wage adjust- ment costs � 4 exogenous shocks: tfp; markup; government; monetary pol- icy. � Approximate solution using "standard" method � Bayesian estimation using RWM and particle …lter

  13. Particle Filter � The goal is to approximate Z � � � � � � � � � Y t � 1 ; � � Y t � 1 ; � p y t = p ( y t j s t ; � ) p s t ds t n o N n o N s i s i – Start from p ( s 0 j � ) to draw i =1 ; Assume we have 0 t � 1 i =1 which approximate p ( s t � 1 j Y t � 1 ; � ) – p ( s t j Y t � 1 ; � ) is approximated by Z � � � � � Y t � 1 ; � p ( s t j Y t � 1 ; � ) = p ( s t j s t � 1 ; � ) p s t � 1 ds t � � � X 1 � � s i � p s t t � 1 ; � N

  14. Particle Filter � n o N � � � s i � s i – Drawing i =1 from p approxiamates p ( s t j Y t � 1 ; � ) ~ � s t t � 1 ; � t hence Z � � � � � � � � � X ds t � 1 � � � � Y t � 1 ; � � Y t � 1 ; � s i = p ( y t j s t ; � ) p � ~ p y t s t p y t t ; � N n o N s i – Finally get an approximation i =1 of p ( s t j Y t ; � ) by draw- t n o N s i ing with replacement from i =1 with pmf given by ~ t � � � � s i p y t � ~ t ; � � i � � � t = P p � s i y t � ~ t ; �

  15. Posterior predictive checks � Draw � i from posterior of the DSGE parameters n o Y i � Simulate Data from the DSGE and obtain median � T � : T estimate of QAR parameters S i Examine how far the median estimate from actual US data � lie in the tail of the empirical distribution of S i

  16. Estimation of QAR(1,1) Model on U.S. Data – Φ 2 Wage Growth GDP Growth 0.2 0.2 0.1 0.1 φ 2 φ 2 0 0 −0.1 −0.1 −0.2 −0.2 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12 In fl ation Federal Funds Rate 0.2 0.2 0.1 0 φ 2 φ 2 0 −0.2 −0.1 −0.2 −0.4 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12 φ 0 + φ 1 ( y t − 1 − φ 0 ) + φ 2 s 2 = t − 1 + (1 + γ s t − 1 ) σ u t y t i.i.d. = φ 1 s t − 1 + σ u t ∼ N (0 , 1) s t u t

  17. Estimation of QAR(1,1) Model on U.S. Data – γ Wage Growth GDP Growth 0.3 0.3 0.2 0.2 0.1 γ γ 0 0.1 −0.1 0 −0.2 −0.1 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12 In fl ation Federal Funds Rate 0.4 0.3 0.4 0.2 γ γ 0.2 0.1 0 0 −0.1 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12 φ 0 + φ 1 ( y t − 1 − φ 0 ) + φ 2 s 2 = t − 1 + (1 + γ s t − 1 ) σ u t y t i.i.d. = φ 1 s t − 1 + σ u t ∼ N (0 , 1) s t u t

  18. Log Marginal Data Density Differentials: QAR(1,1) versus AR(1) Wage Growth GDP Growth 20 20 15 15 10 10 5 5 0 0 −5 −5 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12 In fl ation Federal Funds Rate 20 80 15 60 10 40 5 20 0 0 −5 −20 60−83 60−07 60−12 84−07 84−12 60−83 60−07 60−12 84−07 84−12

  19. Posterior Predictive Checks: 1960-2007 Sample φ 0 φ 1 10 1 0.5 5 0 0 GDP Wage Infl FFR GDP Wage Infl FFR φ 2 γ 0.2 0.2 0 0 −0.2 −0.2 GDP Wage Infl FFR GDP Wage Infl FFR σ 3 2 1 0 GDP Wage Infl FFR ◮ QAR estimates from actual and model-generated data are similar. ◮ Only interest rates exhibit noticeable differences. ◮ Except for wage and inflation ˆ γ , nonlinearities are generally weak.

  20. Posterior Predictive Checks: 1984-2007 Sample φ 0 φ 1 15 1 10 0.5 5 0 0 GDP Wage Infl FFR GDP Wage Infl FFR φ 2 γ 0.2 0.2 0 0 −0.2 −0.2 GDP Wage Infl FFR GDP Wage Infl FFR σ 2 1 0 GDP Wage Infl FFR ◮ Model does not generate nonlinearity (ˆ φ 2 ) in GDP dynamics.

  21. Effect of Adjustment Costs on Nonlinearities: 1960-2007 Sample φ 2 γ 0.15 0.3 0.25 0.1 0.2 0.05 0.15 0 0.1 −0.05 0.05 −0.1 0 −0.05 Wage Infl Wage Infl No asymmetric costs is ψ p = ψ w = 0 (light blue); high asymmetric costs is ψ p = ψ w = 300 (dark blue). Large dots correspond to posterior median estimates based on U.S. data.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend