arben merko i icrea amp institut catal de nanotecnologia
play

Arben Merkoi ICREA & Institut Catal de Nanotecnologia - PowerPoint PPT Presentation

www.nanobiosensors.org Arben Merkoi ICREA & Institut Catal de Nanotecnologia Bellaterra, Catalonia, Spain arben.merkoci@icn.cat 2 nd JAPANESE- SPANISH BILATERAL SYMPOSIUM NANOTECHNOLOGIES AND NEW MATERIALS FOR ENVIRONMENTAL


  1. www.nanobiosensors.org Arben Merkoçi ICREA & Institut Català de Nanotecnologia Bellaterra, Catalonia, Spain arben.merkoci@icn.cat 2 nd JAPANESE- SPANISH BILATERAL SYMPOSIUM “NANOTECHNOLOGIES AND NEW MATERIALS FOR ENVIRONMENTAL CHALLENGES” (SJ-NANO 2013) TSUKUBA (JAPAN), 2013, MARCH 5th

  2. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  3. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  4. N A N D Diagnostics O Environmental E monitoring M V A NANOBIOELECTRONICS & I BIOSENSORS ‘s research aims to T C integrate nanotechnology methods, Other tools and materials into low cost, user E industrial E friendly and efficient (bio)sensors applications R with interest for diagnostics , safety S /security and other fields I Food A quality Safety / L security S

  5. State of the art nanobiosensing technologies www.nanobiosensors.org ACS Nano, 2012, DOI: 10.1021/nn301368z Chemical Reviews, 111 (5), 3433-3458, 2011. Chemical Reviews, 2012, 112, 5317 – 5338 E.Morales, A.Merkoçi, Graphene oxide as an optical biosensing platform”, Advanced Materials,. 2012, 24, 3298 – 3308

  6. Nanomaterials based electrochemical detection tools 2013 Increase the sensitivity and simplicity IV. Indirect detection through nanochannels blocking Ag + Ag + III. Electrocatalytic detections 2H + H 2 Ag Au (silver enhancement, hydrogen evolution) Au II. Direct /onto-electrode detection I. Detection after previous dissolving 2003

  7. NANOPARTICLES & ELECTROCHEMICAL STRIPPING Chemical dissolving followed by Multicoding technology stripping analysis Breast cancer DNA related TRAC 24 341-349 (2005) JACS, 125 3214-3215 (2003) ACA 482 149 – 155 (2003)

  8. Protein detection- direct detection of AuNP Au- α -human-HRP Human IgG α -human IgG-biotin Streptavidin-MB 7 7 DPV of AuNPs 6 6 Optical anti-Human-HRP-Au Optical anti-Human-HRP 5 5 Peak current (  A) Abs (492 nm) 4 4 3 3 2 2 1 1 0 0 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0 1e+1 Human IgG (  g/ml) L.O.D: 52 and 260 pg of human IgG/mL for HRP and electrochemical Analytical Chemistry, 2007, 79, 5232-5240 AuNP-based detections Analytical Chemistry, 2010, 82, 1151 – 1156

  9. Indirect gold nanoparticles detection Catalytic effect of AuNPs towards Ag deposition Au Au Ag + Ag + Au Au Ag + Au Au Detection of human IgG L.O.D. : 23 fg mL -1 Biosens. Bioelectron, 2009, 24, 2475 (8pp) Catalytic effect of AuNPs towards H 2 evolution Detection of a -HepB in human serum L.O.D. : 3 mUI mL -1 Biosens. Bioelectron., 2010, 26, 1710(4pp) Electrochem. Commun. , 2010, 12, 1501(3pp)

  10. Salmonella detection based on diferential voltammetry of AuNP Schematic (not in scale) of Salmonella detection DPV using AuNPs electrochemical detection -1.8 -1.8 7 A B A 6 B 5 4 -1.2 -1.2 3 I/  A I  A 2 1 -0.6 -0.6 1  m 1  m 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 2 3 4 5 6 7 10 10 10 10 10 10 10 10 10 10 10 10 Log [ Salmonella ] / CFU mL-1 -1 E/V vs AgCl Log Biosensors and Bioelectronics 40 (2013) 121 – 126.

  11. Protein detection - AuNP & nanochannels Nanochannels immunoblocking using nanoparticles 20nm AuNP 200 nm pores Responses to blood samples spiked with CA15-3 Effect of AuNP size and Ag enhancement on blocking RSD of 8% ([CA15-3]: 120 U/mL; n=3) Responses to human IgG using 20-nm AuNPs; 80-nm AuNPs; 80-nm LOD: 52 IU/mL of CA15-3 AuNP tags anmd Ag enhancement Small, 2011

  12. Protein detection - AuNP & nanochannels Ag enhancement of 80 nm AuNPs 200 nm nanochannel casted with 50 µL blood Spiked with CA15-3 RSD of 8% ([CA15-3]: 120 U/mL; n=3) LOD: 52 IU/mL of CA15-3 Small, 2011

  13. Cell studies based on CdS QDs Collaboration with E.Giralt. (UB) Electrochemical interrogation of cellular uptake of quantum dots decorated with peptide CdS QD-SAP interaction with HeLa cells: A Supernatant a 1  1 μA b Cells Lisis cells c -1.00 -0.75 -0.50 E/V B a Supernatant 1 μA 1  Cells b Lisis cells c -1.00 -0.75 -0.50 E/V SWV and CLSM images of cells incubated with QDs incluiding blanks

  14. Cells detection based on AuNP & H 2 catalysis Collaboration with Dr. A. González (UV) Immunoelectrochemistry Cancer cell detection (ICN&UV patent) HMY: Tumoral A A 2H + 2H + H 2 H 2 human B cell line with expressed H + H + HLA-DR Immunofluorescence molecules b b c c d d a a H 2 H 2 2H + 2H + B B PC3: a ’ a ’ Tumoral human H + H + prostate b ’ b ’ c ’ c ’ cell line d ’ d ’ Immunofluorescence analysis by flow 4000 cells per 700 µL suspension cytometry and electrochemical analysis of both HMy2 and PC-3 cell lines agreed. AuNP & AuNP-Ab detection A A t / s t / s E / V E / V A A H 2 H 2 2H + 2H + 0 0 100 100 200 200 300 300 -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 5 5 0 0 a ’ a ’ -5 -5 a a b ’ b ’ b b -15 -15 c ’ c ’ i /  A i /  A -50 -50 c c i /  A i /  A d ’ d ’ d d -25 -25 e ’ e ’ e e -35 -35 -100 -100 f ’ f ’ f f -45 -45 g ’ g ’ g g -150 -150 -55 -55 B B E / V E / V t / s t / s -1.5 -1.5 -1.0 -1.0 -0.5 -0.5 0.0 0.0 0.5 0.5 1.0 1.0 1.5 1.5 0 0 100 100 200 200 300 300 H 2 H 2 2H + 2H + 0 0 B B a ’ a ’ 0 0 a a -10 -10 i /  A i /  A i /  A i /  A -50 -50 -20 -20 -100 -100 -30 -30 b b b ’ b ’ -150 -150 -40 -40 Analytical Chemistry, 2009, 81, 10268 – 10274

  15. Catalytic Nanoparticles for Detection of circulating Cancer Cells (CTC) (Collaboration with Prof. C.Nogues, UAB) HER based biosensing device developed by Nanobioelectronics & Biosensors Group LEITAT Simple nanoparticle based technology Small 2012, 8, No. 23, 3605 – 3612 Nano Lett., 2012, 12 (8), pp 4164 – 4171

  16. Tailoring graphene production toward biosensors applications Merkoçi et al. Carbon 2012 , 50: 2987 - roll to roll - ink-jet printing - screen-printing - graphene composites / inks Graphene Oxide as an Optical Biosensing Platform Merkoçi et al. Adv Mater 2012 DOI: 10.1002/adma.201200373

  17. WATER POLLUTION Water, air and soil pollution causes 40 % of deaths worldwide http://www.news.cornell.edu Water-related diseases are one of the leading causes of death worldwide. Over 3 million people die each year. http://worldsavvy.org/monitor Pesticides Phenols Heavy metals Bacteria Toxins etc.

  18. Monitoring water quality should be done periodically to check for aquatic problems in-field sensing systems are necessary

  19. QuickShip Water Treatment Equipment www.ge-energy.com Micro-Klean ™ Industrial Wastewater Treatment Systems Solutions are needed for smart systems that can detect pollutants and evaluate the efficiency of their removal

  20. In-situ smart sensors and evaluators of the pollutants removal efficiency - High sensitivity for various potential pollutants - Versatility in evaluating pollutants removal efficiency - Easy to be integrated - Cost / efficiency Pesticides Detect pollutants and gives qualitative Phenols & quantitative information for Heavy metals their destruction/removing strategies. Bacteria Others

  21. Pesticides Phenols Heavy metals Bacteria Others Nanomaterials based Nanomaterials with high biosensing devices and selective adsorbing / photacatalytic properties Sensitivity Stability Versatility Cost / efficiency

  22. INDEX  Introduction – Our motivation and detection systems  Lab-on-a-chip systems: Detection of pesticides and phenols  Lateral flow / nanomotors based biosensing platforms  Future perspectives & conclusions

  23. Pesticides detection Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. A A f f e e g g a a d d c c II II III III b b I I B B Lab Chip, 9, 213 – 218, 2009

  24. Pesticides detection II II II 1 1 1 I I I d d d III III III II II II 2 2 2 I I I d d d III III III II II II 3 3 3  S S I I I d d d  blank inhibition  % I 100 III III III S blank II II II 100 4 4 4 90 60 s injection d d d I I I 90 s injection 80 70 III III III 60 II II II % Inhibition 50 5 5 5 40 d d d I I I 30 20 III III III 10 II II II 0 0 5 10 15 20 6 6 6 [Carbofuran] (ppb) d d d I I I L.O.D: 0,34 ppb III III III (90” inhibit. time; 5% inhibit) Enzyme-labelled Enzyme-labelled Enzyme-labelled Enzyme-labelled Pesticide Pesticide Pesticide Pesticide Magnet Magnet Magnet Magnet ATCh ATCh ATCh ATCh TCh TCh TCh TCh magnetic beads magnetic beads magnetic beads magnetic beads Lab Chip, 9, 213 – 218, 2009.

  25. Phenolic compounds detection REACTION OF CATECHOL &TYROSINASE USING A BIO-CONJUGATE ON SCREEN PRINTING ELECTRODE (SPE) O-Quinone MWCNT Magnetic nanoparticle (size: 100 nm) O 2 +2H + +2e - Tyrosinase SPE Catechol Magnet Advanced Functional Materials , 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend