applications of chiral perturbation theory
play

Applications of chiral perturbation theory: electromagnetic - PowerPoint PPT Presentation

Applications of chiral perturbation theory: electromagnetic properties of baryons Astrid N. Hiller Blin Johannes Gutenberg-Universit at Mainz hillerbl@uni-mainz.de Thursday 31 st August, 2017 Contents 1 Motivation: What can we learn from EM


  1. Applications of chiral perturbation theory: electromagnetic properties of baryons Astrid N. Hiller Blin Johannes Gutenberg-Universit¨ at Mainz hillerbl@uni-mainz.de Thursday 31 st August, 2017

  2. Contents 1 Motivation: What can we learn from EM probes? 2 Framework: Why do we need ChPT? 3 (Only) a few interesting results ♣ Compton scattering and polarizabilities ♣ Virtual photons and form factors

  3. Photon beams Electromagnetic interactions provide clean probes of the inner structure of hadrons ◮ Low photon energies ( ∼ 100 MeV): Compton scattering ◮ Slightly higher ( � 140 MeV): pion photoproduction Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 1

  4. Photon beams Electromagnetic interactions provide clean probes of the inner structure of hadrons ◮ Low photon energies ( ∼ 100 MeV): Compton scattering ◮ Even higher: start feeling resonance production Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 1

  5. Virtual photons ◮ E.g. elastic electron scattering e − e − b ◮ For all these processes we focus on: small external momenta/momentum transfer Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 2

  6. Non-perturbative QCD vs. chiral perturbation theory E γ ≈ O ( m π ) ⇒ α s = O ( 1 ) Perturbative QCD breaks down = ⇒ EFT: expansion around other parameters Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 3

  7. Non-perturbative QCD vs. chiral perturbation theory E γ ≈ O ( m π ) ⇒ α s = O ( 1 ) Perturbative QCD breaks down = ⇒ EFT: expansion around other parameters Chiral perturbation theory: m π p ext ◮ Small masses, momenta ( 1 GeV , 1 GeV ≪ 1): :combined expansion ◮ New degrees of freedom: : ✭✭✭✭✭✭✭✭✭ ❤❤❤❤❤❤❤❤❤ ✭ quarks and gluons = ⇒ mesons and baryons ❤ Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 3

  8. Lagrangians of ChPT Lowest-order meson Lagrangian ∼ p 2 ext , m 2 π φφγ = F 2 � � L ( 2 ) ∇ µ U ∇ µ U † + χ + 4 Tr 0 Lowest-order baryon Lagrangian ∼ p ext + D + F � ¯ � � ¯ B γ µ { u µ , B } γ 5 � � ¯ B γ µ [ u µ , B ] γ 5 � L ( 1 ) B ( i / φ B γ = Tr D − m ) B 2 Tr 2 Tr Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 4

  9. Inclusion of the spin-3/2 resonances The spin-3 / 2 states couple strongly to the spin-1/2 octet baryons Pascalutsa et al., Phys. Rept. 437 (2007) 125 Geng et al., Phys. Lett. B 676 (2009) 63 √ ∆ φ B = − i 2 C B ab ε cda γ µνλ ( ∂ µ ∆ ν ) dbe ( D λ φ ) ce + H.c. L ( 1 ) ¯ F 0 M ∆ 3 i e g M B ab ε cda Q ce ( ∂ µ ∆ ν ) dbe ˜ F µν + H.c. L ( 2 ) ¯ √ ∆ γ B = − 2 m ( m + M ∆ ) Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 5

  10. Matching a diagram to a specific order � O = 4 L + kV k − 2N π − N N − N ∆ · ? π , spin-1/2 baryon ∼ p − 1 ◮ Propagators: meson ∼ m − 2 ext ◮ Spin-3/2 baryon: new scale δ = M ∆ − m N ≈ 0 . 3 GeV > m π ◮ ( δ/ m p ) 2 ≈ ( m π / m p ) = ⇒ far from resonance mass: ? = 1 2 Pascalutsa and Phillips, Phys. Rev. C 67 (2003) 055202 ◮ Close to resonance mass: p ext ∼ δ = ⇒ ? = 1 Hemmert et al., Phys. Lett. B 395 (1997) 89 Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 6

  11. Renormalization ◮ Loop diagrams: divergences and power counting breaking terms 1 1 e.g. terms ∝ p 2 at O ( p 3 ) ǫ = and 4 − dim Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 7

  12. Renormalization ◮ Loop diagrams: divergences and power counting breaking terms 1 1 e.g. terms ∝ p 2 at O ( p 3 ) ǫ = and 4 − dim ◮ Fully analytical = ⇒ match with Lagrangian terms ◮ Low-energy constants of these terms a priori unknwon Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 7

  13. Renormalization ◮ Loop diagrams: divergences and power counting breaking terms 1 1 e.g. terms ∝ p 2 at O ( p 3 ) ǫ = and 4 − dim ◮ Fully analytical = ⇒ match with Lagrangian terms ◮ Low-energy constants of these terms a priori unknwon ◮ EOMS-renormalization prescription: Gegelia and Japaridze, Phys. Rev. D 60 (1999) 114038 ◮ MS absorbs L = 2 ǫ + log ( 4 π ) − γ E into LECs ◮ Also subtracts PCBT by redefinition of LECs ◮ Usually converges faster than other counting schemes (relativistic or not) Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 7

  14. Compton scattering and polarizabilities Hiller Blin, Gutsche, Ledwig and Lyubovitskij Phys. Rev. D 92 (2015) 096004 arXiv: 1509.00955 [hep-ph]

  15. Polarizabilities u u d u d |E|=0 |E|>0 u ◮ In EM field: hadrons deformed due to charged components ◮ Size of deformation: related to polarizabilities ◮ Experiment: Compton scattering off hadron targets Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 8

  16. Theoretical approach ◮ Amplitude expansion around low photon energy ω ◮ O ( ω 0 ) : total charge ◮ O ( ω 1 ) : anomalous magnetic moment ◮ O ( ω 2 ) : α E and β M ◮ O ( ω 3 ) : spin-dependent polarizabilities γ i Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 9

  17. Theoretical approach ◮ Amplitude expansion around low photon energy ω ◮ O ( ω 0 ) : total charge ◮ O ( ω 1 ) : anomalous magnetic moment ◮ O ( ω 2 ) : α E and β M ◮ O ( ω 3 ) : spin-dependent polarizabilities γ i ◮ Forward spin polarizability γ 0 ◮ response to deformation relative to spin axis ◮ photon scattering in extreme forward direction Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 9

  18. Theoretical approach ◮ Amplitude expansion around low photon energy ω ◮ O ( ω 0 ) : total charge ◮ O ( ω 1 ) : anomalous magnetic moment ◮ O ( ω 2 ) : α E and β M ◮ O ( ω 3 ) : spin-dependent polarizabilities γ i ◮ Forward spin polarizability γ 0 ◮ response to deformation relative to spin axis ◮ photon scattering in extreme forward direction ◮ Theory: Hemmert et al., Phys. Rev. D 57 (1998) 5746 � ǫ µ M SD µν ǫ ∗ ν ∂ ǫ ∗ )] = − i � γ 0 [ � σ · ( � ǫ × � � ∂ω 2 4 π ω � ω = 0 Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 9

  19. Experimental extraction ◮ Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612 � ∞ d ωσ 3 / 2 ( ω ) − σ 1 / 2 ( ω ) γ 0 = − 1 4 π 2 ω 3 ω 0 σ 3 / 2 ( σ 1 / 2 ) : photon and target helicities are (anti)parallel Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 10

  20. Experimental extraction ◮ Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612 � ∞ d ωσ 3 / 2 ( ω ) − σ 1 / 2 ( ω ) γ 0 = − 1 4 π 2 ω 3 ω 0 σ 3 / 2 ( σ 1 / 2 ) : photon and target helicities are (anti)parallel ◮ Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160 γ p 0 = [ − 1 . 01 ± 0 . 08(stat) ± 0 . 10(syst) ] · 10 − 4 fm 4 ◮ Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99 0 = [ − 1 . 1 ± 0 . 4 ] · 10 − 4 fm 4 and γ n γ p 0 = [ − 0 . 3 ± 0 . 2 ] · 10 − 4 fm 4 Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 10

  21. Experimental extraction ◮ Sum rule: Gell-Mann et al., Phys. Rev. 95 (1954) 1612 � ∞ d ωσ 3 / 2 ( ω ) − σ 1 / 2 ( ω ) γ 0 = − 1 4 π 2 ω 3 ω 0 σ 3 / 2 ( σ 1 / 2 ) : photon and target helicities are (anti)parallel ◮ Experiment: Pasquini et al., Phys. Lett. B 687 (2004) 160 γ p 0 = [ − 1 . 01 ± 0 . 08(stat) ± 0 . 10(syst) ] · 10 − 4 fm 4 ◮ Dispersion relations: Drechsel et al., Phys. Rept. 378 (2003) 99 0 = [ − 1 . 1 ± 0 . 4 ] · 10 − 4 fm 4 and γ n γ p 0 = [ − 0 . 3 ± 0 . 2 ] · 10 − 4 fm 4 ◮ First goal is to reproduce these values theoretically ◮ Then extend the theoretical model to predict ⇒ hyperons polarizabilities of not yet measured states = Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 10

  22. Renormalization ◮ ∞ and PCBT: do not enter pieces ∼ ω 3 relevant for γ 0 ◮ Leading order for γ 0 = ⇒ no unknwon LECs ◮ Results independent of renormalization or unknown LECs ⇓ pure predictions of ChPT Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 11

  23. Results with different covariant ChPT models γ 0 [10 - 4 fm - 4 ] ◇ Proton Neutron ● 3 ● SU(2) ■ ● ■ our SU(3) results 2 ■ ◆ SU(2) Δ 1 ▲ our SU(3) Δ results ◆ 0 ▼ Experiment ○ ◆ ○ Disp. Rel. - 1 ▼○ ▲ ▲ - 2 SU ( 2 ) : Bernard et al., Phys. Rev. D 87 (2013) 054032 SU ( 2 ) with ∆ : Lensky et al., Eur. Phys. J. C 75 (2015) 604 Experiment : Pasquini et al., Phys. Lett. B 687 (2004) 160 Dispersion relations : Drechsel et al., Phys. Rept. 378 (2003) 99 Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 12

  24. Results for the hyperons γ 0 [ fm − 4 10 − 4 ] Σ + Σ 0 Ξ 0 Σ − Λ Ξ − Our full model -2.30(33) 0.90 0.47(8) -1.25(25) 0.13 -3.02(33) ◮ g M not well known ◮ We estimate it from electromagnetic decay width Γ ∆ → γ N g M = 3 . 16 ( 16 ) ◮ Thursday 31 st August, 2017 SFB School 2017 A. N. Hiller Blin, JGU Mainz 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend