application of the coulomb spheroidal basis for
play

Application of the Coulomb spheroidal basis for diatomic molecular - PowerPoint PPT Presentation

Application of the Coulomb spheroidal basis for diatomic molecular calculations T . Kereselidze and G. Chkadua Department of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia Content: 1. Introduction 2. The Coulomb


  1. Application of the Coulomb spheroidal basis for diatomic molecular calculations T . Kereselidze and G. Chkadua Department of Exact and Natural Sciences, Tbilisi State University, 0179 Tbilisi, Georgia

  2. Content: 1. Introduction 2. The Coulomb spheroidal wave functions 3. Basic equations E i 4. Obtained results and comparison with the characteristics of the hydrogen molecular ion H 2 + 5. Conclusion

  3. S ym m e t rical d iat om ic m ol e cu l e S฀ + + H , H , C , N , O H , H , C , N , O 2 2 2 2 2 2 2 2 2 2 ( ) Heitler and London LCAO Hund and Mulliken

  4. + Hydrogen molecular ion H 2  E  r r b a R Z A =1 Z B =1

  5. Prolate spheroidal coordinate system + − r r r r ξ = η = ϕ = a b a b , , arctg y x ( / ) R R ≤ ξ < ∞ − ≤ η ≤ ≤ ϕ < π 1 , 1 1 0 2

  6. Schrödinger equation for hydrogen molecular ion   1 1 1 − ∆ − − Ψ ± = ε ± Ψ ± ( ) ( ) ( )   ( R )   2 r r a b − ϕ im e ± ± Ψ = ξ η ( ) ( ) X ( , R Y ) ( , R ) n n m n m n m π ξ ξ η η 2  ±  ε ( ) ( ) 2 2 d dX R m ξ − + λ + ξ + ξ − ξ = 2 2   1 2 ( , ) 0 R X R ξ ξ ξ − 2 d d  2  1 ±  ±  ε ( ) ( ) ( ) 2 2 d dY R m ± − η + − − λ η − η = 2 2 ( )   1 Y ( , ) R 0 η η − η 2 d d  2  1

  7. + Electornic energies of H 2

  8. H + HE GR OUND AND FIR M S OF STEXCIT ED T ER 2

  9. ฀ i st OF P UBL ICATION : 1 T ฀ K e re Se l id ze ฀ Z ฀ S ฀ IA NI A ND G ฀ c h Kad u a฀ ฀ P HYS ฀ J ฀ D 6 3 8 1 ฀ 2 0 1 1 ฀ M A CHA VA R E UR 2 ฀ J ฀ M ฀ P e e K฀ T ฀ K e re Se l id ze ฀ I ฀ N oSe l id ze A ND J ฀ K ie l KoP f฀ J ฀ P HYS ฀ B ฀ A T ฀ m ol ฀ o P t ฀ P HYS ฀ 4 0 ฀ 5 6 5 ฀ 2 0 0 7 ฀ 3฀ a ฀ d e vd ariaN i฀ t฀ m ฀ K e re Se l id ze ฀ i฀ l ฀ N oSe l id ze ฀ e ฀ d al im ie r฀ P ฀ S au vaN ฀ P ฀ a N ge l o฀ aN d r ฀ S cot t ฀ P h yS฀ r e v฀ v฀ a 71฀ P ฀ 022512 ฀ 2005฀ 4฀ t฀ m ฀ K e re Se l id ze ฀ i฀ l ฀ N oSe l id ze aN d m ฀ i฀ c h ib iSov฀ J ฀ P h yS฀ b ฀ a t ฀ m ol ฀ o P t ฀ P h yS฀ 36 853 ฀ 2003฀ 5฀ a ฀ z ฀ d e vd ariaN i฀ t฀ m ฀ K e re Se l id ze aN d i฀ l ฀ N oSe l id ze ฀ K h im ich e SKaia P h ySica v฀ 22 P ฀ 3 ฀ 2003฀ 6฀ t฀ m ฀ K e re Se l id ze ฀ z ฀ S ฀ m ach avariaN i aN d i฀ l ฀ N oSe l id ze ฀ J ฀ P h yS฀ b ฀ a t ฀ m ol ฀ o P t ฀ P h yS฀ 31฀ 15 ฀ 1998฀ 7฀ t฀ m ฀ K e re Se l id ze ฀ z ฀ S ฀ m ach avariaN i aN d i฀ l ฀ N oSe l id ze ฀ J ฀ P h yS฀ b ฀ a t ฀ m ol ฀ o P t ฀ P h yS฀ 29฀ 257 ฀ 1996฀ 8฀ t฀ m ฀ K e re Se l id ze ฀ h ฀ a ฀ m ou rad aN d m ฀ f ฀ t zu l u Kid ze ฀ J ฀ P h yS ฀ b ฀ a t ฀ m ol ฀ o P t ฀ P h yS฀ 25฀ 2957 ฀ 1992฀ 9฀ t฀ m ฀ K e re Se l id ze ฀ S ov฀ P h yS฀ J e t f 100฀ 95 ฀ 1991฀ 10฀ m ฀ i฀ c h ib iSov aN d t฀ m ฀ K e re Se l id ze ฀ P re P riN t ia e ฀ 5410฀ 6฀ m oScow ฀ P ฀ 1฀ 43 ฀ 1991฀ 11฀ t฀ m ฀ K e re Se l id ze P roce e d iN g of g e orgiaN a cad e m y of S cie N ce S ฀ v฀ 139฀ P ฀ 481 ฀ 1990฀ 12฀ a ฀ z ฀ d e vd ariaN i฀ t฀ m ฀ K e re Se l id ze aN d a ฀ l ฀ z agre b iN ฀ J ฀ P h yS฀ b ฀ a t ฀ m ol ฀ o P t ฀ P h yS฀ 23฀ 2457 ฀ 1990฀ 13T.฀. ฀ er esel i dze, J. ฀ hys. ฀ : ฀ t . ฀o l . ฀ hys. 20, 1891 (1987) 14฀ t฀ m ฀ K e re Se l id ze aN d b ฀ i฀ K iKiaN i฀ S ov฀ P h yS฀ J e t f 87฀ 741 ฀ 1984฀ 15฀ t฀ m ฀ K e re Se l id ze ฀ S ov฀ P h yS฀ J e t f 69฀ 67 ฀ 1975฀ 16฀ t฀ m ฀ K e re Se l id ze aN d o ฀ b ฀ f irSov฀ S ov฀ P h yS฀ J e t f 65฀ 98 ฀ 1973฀

  10. Schrödinger equation for hydrogen-like ion   Z 1 − ∆ − Ψ = ε Ψ  a b ,  a b , a b , a b , ( R )   2 r   a b , − ϕ im e Ψ = ξ η a b , a b , X ( , R Y ) ( , R ) n n m n m n m π ξ η ξ η 2   ε ( ) 2 2 d dX R m ξ − + λ + ξ + ξ − ξ = 2 2   1 ( , ) 0 ZR X R ξ ξ ξ − 2 d d  2  1   ε ( ) a b , 2 2 d dY R m − η + − − λ η η − η = 2 2 a b ,    1 ZR Y ( , ) R 0 η η − η 2 d d  2  1 = + + + n n n m 1 ξ η

  11. The Coulomb spheroidal wave functions = + + = n m 1, n n 0; 1 ฀ ξ η − ξ = ξ ZR / 2 n X e W ( ) 0 m = η η  a b , ZR / 2 n Y e W ( ) 0 m = + + = n m 2, 2 ฀ n n 1,2; ξ η   nh = − ξ ξ − ξ 1,2 ZR / 2 n   X e W ( ) 0 m m ,1   ZR   nh = η η η  , / 2 1,2 a b ZR n    Y e W ( ) 1 ,0 m m   ZR

  12. = + + = n m 3, n n 1,2,3; 3 ฀ ξ η   2 nh n h − ξ = ξ − ξ + − − − ξ ZR / 2 n  2 1,2,3 1,2,3  X e ( h 2 m 4) 1 W ( )   0 m m ,1 ,2 m 1,2,3 2 2  ZR 2 Z R    2 nh n h η = η η + − − − η  a b , ZR / 2 n  2 1,2,3 1,2,3   Y e ( h 2 m 4) 1 W ( )   2 m m ,1 ,0 m 1,2,3 2 2  ZR 2 Z R  W ξ = ξ − W η = − η 2 1) m / 2 2 ) m / 2 ( ) ( ( ) (1 = + + + n n n m 1 ξ η

  13. The basic equations { } { } ξ η − ϕ ξ η − ϕ a im a im X ( , ) R Y ( , ) R e X ( , ) R Y ( , ) R e nn m nn m nn m nn m ξ η ξ η ± = η ± η ( ) a b ( , ) ( , ) Y Y R Y R nn m nn m nn m η η η ± ± ϕ Ψ ξ η ϕ = Φ ξ η ( ) ( ) im ( , , , R ) ( , , R e ) ∞ − − = ∑ ∑ n m 1 ± ± ± Φ ξ η ( ) ( ) ( ) C ( ) R X ( , R Y ) ( , R ) nn m nn m nn m η ξ η = = n 1 n 0 η

  14. The basic equations ∞ − − ( ) n m 1   ∑ ∑ ± ± ± ± ε − + = ( ) ( ) ( ) ( ) E U V C 0     ฀฀ ฀฀ n nn η n n , nn n n , nn η η η η = = n 1 n 0 η ( ) ε ± ± ± − + = ( ) ( ) ( ) E U V 0 ฀฀ ฀฀ n n n , nn n n , nn η η η η ± = 〈 ξ 〉〈ϒ ± ϒ ± 〉 − 〈 〉 〈ϒ ± η ϒ ± 〉 ( ) 2 ( ) ( ) ( ) 2 ( ) U X X X X ฀฀ ฀฀ ฀฀ ฀฀ ฀฀ nn nn nn nn n n , n n n n ξ n n η n n ξ n n η η η ξ η ξ η 2 (2  ± = − 〈 ξ 〉〈ϒ ± ϒ ± 〉 ( ) ( ) ( ) V Z ) X X   ฀฀ ฀฀ ฀฀ nn nn n n , n n n n ξ n n η R η η ξ η  ± ± + 〈 〉 〈ϒ η ϒ 〉  ( ) ( ) ( ) Z X X d   ฀฀ ฀฀ nn nn nn ξ η η n n n n ξ η = − 2 2 E Z / 2 n n

  15. 1 s σ e l e ct roN ic e N e rgie S for St at e ε + ( ) ( ) R au σ 1 s ฀ xac t VAL UES Z = ≠ ≠ R au 1 Z 1 Z 1 0.25 -1.4754 -1.8980 -1.8986 -1.8981 0.5 -1.4213 -1.7318 -1.7319 -1.7350 0.75 -1.3560 -1.5753 -1.5824 -1.5757 1.0 -1.2884 -1.4410 -1.4418 -1.4518 1.25 -1.2230 -1.3283 -1.3418 -1.3295 1.50 -1.1617 -1.2338 -1.2490 -1.2353 1.75 -1.1053 -1.1541 -1.1559 -1.1701 2.0 -1.0538 -1.0865 -1.1026 -1.0885 2.25 -1.0071 -1.0286 -1.0444 -1.0307 2.5 -0.9648 -0.9788 -0.9808 -0.9938 2.75 -0.9267 -0.9355 -0.9497 -0.9376 3.0 -0.8924 -0.8978 -0.9109 -0.8998 3.5 -0.8339 -0.8357 -0.8375 -0.8466 4.0 -0.7869 -0.7873 -0.7961 -0.7898 4.5 -0.7493 -0.7493 -0.7562 -0.7506 5.0 -0.7192 -0.7192 -0.7202 -0.7244 6.0 -0.6757 -0.6757 -0.6786 -0.6763 7.0 -0.6469 -0.6469 -0.6485 -0.6472 8.0 -0.6267 -0.6267 -0.6269 -0.6276 9.0 -0.6118 -0.6118 -0.6123 -0.6119 10.0 -0.6003 -0.6003 -0.6006 -0.6004 12.0 -0.5834 -0.5834 -0.5834 -0.5835 16.0 -0.5625 -0.5625 -0.5625 -0.5625 20.0 -0.5500 -0.5500 -0.5500 -0.5500

  16. 2 p π e l e ct roN ic e N e rgie S for St at e ε + ( ) ( ) R au π 2 p ฀ xac t VAL UES Z = ≠ ≠ 1 1 1 Z Z R au 0.25 -0.3746 -0.4980 -0.4880 -0.4980 0.5 -0.3735 -0.4923 -0.4923 -0.4923 0.75 -0.3716 -0.4841 -0.4839 -0.4839 1.0 -0.3692 -0.4736 -0.4737 -0.4741 1.25 -0.3662 -0.4631 -0.4622 -0.4623 1.50 -0.3627 -0.4517 -0.4503 -0.4504 1.75 -0.3589 -0.4380 -0.4382 -0.4402 2.0 -0.3548 -0.4259 -0.4288 -0.4261 2.25 -0.3504 -0.4176 -0.4140 -0.4143 2.5 -0.3458 -0.4025 -0.4029 -0.4068 2.75 -0.3411 -0.3964 -0.3914 -0.3919 3.0 -0.3363 -0.3808 -0.3864 -0.3814 3.5 -0.3266 -0.3610 -0.3619 -0.3678 4.0 -0.3169 -0.3508 -0.3432 -0.3443 4.5 -0.3073 -0.3354 -0.3272 -0.3285 5.0 -0.2979 -0.3129 -0.3143 -0.3214 6.0 -0.2803 -0.2970 -0.2884 -0.2899 7.0 -0.2642 -0.2766 -0.2684 -0.2699 8.0 -0.2499 -0.2519 -0.2534 -0.2595 9.0 -0.2374 -0.2450 -0.2383 -0.2397 10.0 -0.2265 -0.2327 -0.2269 -0.2282 12.0 -0.2092 -0.2092 -0.2102 -0.2133 16.0 -0.1871 -0.1888 -0.1871 -0.1876 20.0 -0.1745 -0.1745 -0.1747 -0.1751

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend