application of multi objective optimisation to match turn
play

Application of multi-objective optimisation to match turn pattern - PowerPoint PPT Presentation

WIR SCHAFFEN WISSEN HEUTE F UR MORGEN M. Frey, J. Snuverink, C. Baumgarten, A. Adelmann :: SNSF project 200021 159936 :: Paul Scherrer Institut Application of multi-objective optimisation to match turn pattern measurements for cyclotrons


  1. WIR SCHAFFEN WISSEN – HEUTE F¨ UR MORGEN M. Frey, J. Snuverink, C. Baumgarten, A. Adelmann :: SNSF project 200021 159936 :: Paul Scherrer Institut Application of multi-objective optimisation to match turn pattern measurements for cyclotrons 15/04/2019 :: GFA Seminar Thesis advisor: Prof. Dr. Klaus S. Kirch Thesis supervisor: Dr. Andreas Adelmann

  2. Outline • Motivation • New Trimcoil Model in OPAL • Multi-Objective Optimisation • Local Search • Final Results & Conclusions M. Frey 2 / 45

  3. Obtain Isochronicity in Cyclotrons • Discrepancies / Error in • magnetic field (calculation and construction) • injection parameters ( E kin , r , p r , ... ) • element positioning (RF cavities) • etc. • Restored / Achieved: Additional B-field with trimcoils (TCs) = ⇒ phase shift (beam gets more/less energy by RF cavities) = ⇒ turn radius shift M. Frey 3 / 45

  4. Mismatch between Measurements and Simulations • Discrepancies / Error in • measured magnetic field due to measuring conditions , technique and machine accessibility • simulation model: • discretisation in time and space • simplified device models • missing device models • etc. • injection parameters ( E kin , r , p r , ... ) Towards quantitative simulations of high power proton cyclotrons. • element positioning (RF cavities) Y. J. Bi, A. Adelmann, R. D¨ olling, M. Humbel, W. Joho, M. Seidel, • etc. and T. J. Zhang. Phys. Rev. ST Accel. Beams 14, 054402 M. Frey 4 / 45

  5. Towards More Realistic Trimcoil Simulations • OPAL PSI-Ring model only TC15 but 16 TCs (TC17/18 not used) in PSI-Ring Cyclotron • TC-model in OPAL approximated using analytical model mimicking profile but there are TC measurements available • TC-field contribution in OPAL for 360 degree but in reality only on sector magnets M. Frey 5 / 45

  6. New Trimcoil Model in OPAL • Radially rational TC profile description � n i =0 a i r i TC( r ) = B max n , m ∈ N 0 ∧ r ∈ [ r min , r max ] � m j =0 b j r j tc1 : TRIMCOIL , TYPE = ”PSI − PHASE” , RMIN = . . . , // i n n e r r a d i u s [mm] RMAX = . . . , // outer r a d i u s [mm] BMAX = . . . , // B − f i e l d peak value [T] COEFNUM = { a0 , a1 , a2 , a3 } , COEFDENOM = { b0 , b1 , b2 , b3 , b4 , b5 } ; M. Frey 6 / 45

  7. New Trimcoil Model in OPAL • Supported types: • new: PSI-BFIELD, PSI-PHASE • old: PSI-BFIELD-MIRRORED • Cyclotron-Definition: Ring : CYCLOTRON, TRIMCOILTHRESHOLD = . . . , // lower l i m i t of TC c o n t r i b u t i o n [T] TRIMCOIL = { tc1 , tc2 , tc3 , . . . } . . . ; M. Frey 7 / 45

  8. PSI-Ring Trimcoil Model • Starting point: Measurement of phase shift effect 1 ∆ B ∼ − d ∆ sin( φ ) dr 1 S. Adam and W. Joho, PSI Technical Report No. TM-11-13, 1974. M. Frey 8 / 45

  9. PSI-Ring Trimcoil Model • Fit of phase shift curves: � n i =0 a i r i ∆ sin( φ )( r ) ≈ h phase ( r ) = f ( r ) g ( r ) = � m j =0 b j r j with m > n ∈ N 0 • TC2 - TC15: n = 2 , m = 4 • TC1, TC16 - TC18: n = 4 , m = 5 • Magnetic field: phase = − f ′ g − fg ′ B ( r ) = − dh phase = − h ′ g 2 dr M. Frey 9 / 45

  10. PSI-Ring Trimcoil Model - Example TC6 M. Frey 10 / 45

  11. PSI-Ring Trimcoil Model - Example TC6 M. Frey 11 / 45

  12. Multi-Objective Optimisation (MOO) in OPAL • Built-in MOO 2 : min f ( x ) , dim( f ) ≥ 1 s.t. g ( x ) ≥ 0 , dim( g ) ≥ 0 n ∈ N > 0 −∞ ≤ x L i ≤ x = x i ≤ x U x ∈ X ⊂ R n , ≤ ∞ , i • Design variables x: E kin , p r , ϕ , TC1 - TC16 max. B-field, etc. • Objectives: Measure between simulation and real data Note: f is our PSI-Ring model + evaluation of objectives! 2 Toward massively parallel multi-objective optimisation with application to particle accelerators. PhD Thesis. Y. Ineichen. 2013 M. Frey 12 / 45

  13. Multi-Objective Genetic Algorithm (MOGA) 1 st generation Charles Darwin 3 3 Image:https://en.wikipedia.org/wiki/Charles Darwin M. Frey 13 / 45

  14. Multi-Objective Genetic Algorithm (MOGA) 1 st generation mutation Charles Darwin 3 3 Image:https://en.wikipedia.org/wiki/Charles Darwin M. Frey 14 / 45

  15. Multi-Objective Genetic Algorithm (MOGA) 1 st generation mutation crossover Charles Darwin 3 3 Image:https://en.wikipedia.org/wiki/Charles Darwin M. Frey 15 / 45

  16. Multi-Objective Genetic Algorithm (MOGA) 1 st generation mutation crossover 2 nd generation Charles Darwin 3 3 Image:https://en.wikipedia.org/wiki/Charles Darwin M. Frey 16 / 45

  17. Multi-Objective Genetic Algorithm (MOGA) 1 st generation mutation crossover 2 nd generation ... Charles Darwin 3 3 Image:https://en.wikipedia.org/wiki/Charles Darwin M. Frey 17 / 45

  18. Radial Profile Measurement – Centred Beam • Measurements: Peak intensity of radial profile of probes to distinguish turns Figure: Histogram of RRL measurement M. Frey 18 / 45

  19. Trimcoil Optimisation in OPAL • Simulations: • Single particle ⇒ probe hit = turn • Multi particles ⇒ peak finder routine • Good setting: Radial peak of measurement and simulation at probes are close! • RRI2: turns 1 - 16 • RRL: turns 9 - 182 182 turns ⇒ Infeasible number of objectives! OPAL simulations of the PSI ring cyclotron and a design for a higher order mode flat top cavity. N. J. Pogue, A. Adelmann. Proceedings of IPAC2017. THPAB077. 2017. M. Frey 19 / 45

  20. Problem Reduction • Turn - Aggregation: • L 2 -norm � u � σ [ l , u ] = 1 � � ( r m − r s i ) 2 � i N i = l • L ∞ -norm i = l ... u | r m − r s σ [ l , u ] = max i | i N = u − l + 1: number of aggregated turns r m i : i -th turn radii of measurement r s i : i -th turn radii of simulation M. Frey 20 / 45

  21. Problem Reduction • TC support reduction: Feasible assumption for neighbouring TCs ⇒ Cancellation of B-field tails M. Frey 21 / 45

  22. Trimcoil Optimisation in OPAL - Trial 1 • Goal: Find initial injection values • Design variables: • beam energy E kin • injection angle • injection momentum • injection radius • TC1 - TC4 • MOO: (504 cores) #generations 500 + #individuals 502 peak 1 - 3 peak 4 - 6 peak 7 - 9 peak 10-12 peak 13 - 16 • 5000 particles per individual objectives M. Frey 22 / 45

  23. Issue of Divergence - Trial 1 • Optimising a few TCs after the others (i.e. optimise sub-problems) lead to divergence! • RF cavity voltages not correct → more design variables needed! M. Frey 23 / 45

  24. Model Simplification + Design Variable Extension • Single particle tracking instead of bunch (5000 particles) tracking = ⇒ full PSI-Ring simulation in 1 - 2 s • Design variables: • injection angle, radius, momentum and energy • main cavity voltages • phase of Flat-Top cavity • voltage of Flat-Top cavity • radial position of main cavities • radial position of Flat-Top cavity • Turn number constraint to guarantee feasible solutions M. Frey 24 / 45

  25. Design Variables in Context of Cyclotron ① main RF cavity displacement in radial direction; RF voltage on main cavity 1 - 4 ② displacement of main cavity’s axis from global center 5 1 9 ③ flat top cavity displacement in radial direction 5 9 ④ displacement of flat top’s axis from global center 1 9 6 ⑤ main cavity’s angle w.r.t. the center line of sector RRL magnet 1 RRI2 7 9 ⑥ injection beam energy, injection radial momentum, 2 9 injection angle of beam, injection radius w.r.t. the global coordinate system ⑦ positioning of probes (6 parameters) 4 9 1 ⑧ flat top cavity angle w.r.t. global coordinate system 9 1 ⑨ trim coil maximum magnetic field 5 3 9 5 ⑩ phase of flat top; RF voltage on flat top cavity 8 10 M. Frey 25 / 45

  26. Evolution of best individual during MOGA > 8k individuals/generation σ [106 , 148] σ [1 , 16] σ [62 , 105] σ [149 , 182] σ [32 , 61] σ [9 , 31] i [mm] 50 40 � j =1 σ j 30 �� M 20 i =1 ,...,N min 10 0 10 20 30 40 50 60 70 generation Figure: The label σ [ l , u ] indicates an objective for the turns in the range [ l , u ]. M : number of objectives; N : number of individuals per generation. M. Frey 26 / 45

  27. Result of best individual obtained by MOGA Objective l ∞ -error Probe σ [ l , u ] (mm) 6 . 38 RRI2 σ [1 , 16] σ [9 , 31] 3 . 76 RRL σ [32 , 61] 6 . 34 RRL 4 . 39 RRL σ [62 , 105] 2 . 91 RRL σ [106 , 148] σ [149 , 182] 3 . 27 RRL Table: The label σ [ l , u ] indicates an objective for the turns in the range [ l , u ]. M. Frey 27 / 45

  28. Local search after MOGA • Issues: • Optimiser suffered with individual selection • No further improvements! • Changing all parameters at same time might be disadvantageous • Idea: Do simple parameter scanning! • Python script (1 core) • Starting from best MOO individual • Iteratively find worst turn and vary parameters to obtain better individual (check L ∞ - and L 2 -norm, 2nd and 3rd worst turn to avoid getting stuck with only L ∞ ) • Change a input parameter only in per-mille magnitude M. Frey 28 / 45

  29. Evolution of maximum absolute error during local search > 1 mm error reduction after a few iterations max. error [mm] 6 . 0 5 . 5 5 . 0 4 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 × 10 4 iteration M. Frey 29 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend