apex consumers and trophic downgrading
play

Apex Consumers and Trophic Downgrading Andrea de Lima Ribeiro (Oc.) - PowerPoint PPT Presentation

Apex Consumers and Trophic Downgrading Andrea de Lima Ribeiro (Oc.) Carlos Andrs Marcelo-Servn (Biol.) Carolina Arruda Moreira (Phys.) Cecilia Andreazzi (Biol.) Csar Parra (Phys.) Henrique Rubira (Undergrad.) II Southern-Summer School


  1. Apex Consumers and Trophic Downgrading Andrea de Lima Ribeiro (Oc.) Carlos Andrés Marcelo-Serván (Biol.) Carolina Arruda Moreira (Phys.) Cecilia Andreazzi (Biol.) César Parra (Phys.) Henrique Rubira (Undergrad.) II Southern-Summer School on Mathematical Biology Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 1 / 16

  2. Some concepts • Apex (alpha, top-level) predators: no predators at their own; • Apex consumers may be able to model an ecosystem [1]; • Concept of trophic cascades; • Propagation of impacts by consumers on their prey downward through food webs. [3] Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 2 / 16

  3. Some concepts • Loss of Apex changes the species composition and density of lower levels; • Top-down control is not the only process that modulate the species diversity. Figura: From [2] Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 3 / 16

  4. The system Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 4 / 16

  5. Populations Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 5 / 16

  6. The article Ecological Applications, 14(5), 2004, pp. 1566–1573 q 2004 by the Ecological Society of America FISHING FOR LOBSTERS INDIRECTLY INCREASES EPIDEMICS IN SEA URCHINS K EVIN D. L AFFERTY 1 USGS Western Ecological Research Center, c/o Marine Science Institute, University of California, Santa Barbara, California 93106 USA Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 6 / 16

  7. Objectives and questions Objectives To develop a mathematical model that describes the dynamics of the system that Lafferty (2004) studied. Questions • Is there evidence for top-down control? What are the conditions for its occurrance? • How do trophic cascade and epidemics interact? • How impacts on the apex predator population affects the food chain and epidemiological dynamics of this system? Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 7 / 16

  8. Mathematical Model - Equations dK dt = K ( 1 − K ) − a ( U 1 + U 2 ) K dU 1 U 1 = − b L − m 0 U 1 − gm 1 U 1 + rU 1 U 2 dt U 1 + U 2 + U c dU 2 U 2 = ac ( U 1 + U 2 ) K − b L − m 0 U 2 − rU 1 U 2 dt U 1 + U 2 + U c dL U 1 + U 2 dt = bd L − m 2 L U 1 + U 2 + U c K , U 1 , U 2 , L : populations of kelps, infected urchins, not infected urchins and lobsters a , b : attack rates of urchins and lobsters c , d : efficiency of predation by urchins and lobsters r : transmission rate of infection m 0 , m 1 , m 2 : mortality rates of urchins (natural causes), urchins (infection) and lobsters g : multiplying factor U c : urchin critical density Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 8 / 16

  9. Mathematical Model - Equations g ( U ) = 1 + α 1 − e − β ( U − U c ) 1 + e − β ( U − U c ) g(U) 1.5 1.0 0.5 Uc U α = 1 . 0 β = 5 . 0 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 9 / 16

  10. Results Sub-system: kelps and not infected urchins dK dt = K ( 1 − K ) − aU 2 K dU 2 = acU 2 K − m 0 U 2 dt Important fixed points: 1 K ∗ = 1 , U 2 ∗ = 0 : stable for m 0 > ac 2 K ∗ = m 0 ac , U 2 ∗ = ac − m 0 : exists and it’s stable for m 0 < ac a 2 c Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 10 / 16

  11. Results a = 1 . 0 , c = 0 . 3 , m 0 = 0 . 5 1.0 0.8 K(t) 0.6 0.4 NI (t) 0.2 t 14. 28. 42. 56. 70. Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 10 / 16

  12. Results a = 1 . 0 , c = 0 . 3 , m 0 = 0 . 5 NI 0.4 0.3 0.2 0.1 K 0.2 0.4 0.6 0.8 1.0 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 10 / 16

  13. Results a = 1 . 0 , c = 0 . 3 , m 0 = 0 . 03 1.0 0.8 K(t) 0.6 0.4 NI(t) 0.2 t 20. 40. 60. 80. 100. Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 10 / 16

  14. Results a = 1 . 0 , c = 0 . 3 , m 0 = 0 . 03 NI 1.0 0.8 0.6 0.4 K 0.1 0.2 0.3 0.4 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 10 / 16

  15. Results Sub-system: kelps, infected and not infected urchins (lobsters have been removed) dK dt = K ( 1 − K ) − a ( U 1 + U 2 ) K dU 1 = − m 0 U 1 − gm 1 U 1 + rU 1 U 2 dt dU 2 = ac ( U 1 + U 2 ) K − m 0 U 2 − rU 1 U 2 dt Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  16. Results Important fixed points: : stable for r < a 2 c ( m 0 + gm 1 ) 1 K ∗ = m 0 ac , U 1 ∗ = 0 , U 2 ∗ = ac − m 0 a 2 c ac − m 0 2 1 K ∗ = 2 acr [ r ( ac + m 0 + gm 1 ) � � r ( r ( ac + m 0 + gm 1 ) 2 + 4 ac ( m 0 + gm 1 )( − r + agm 1 )) − 1 ∗ = r ( ac − m 0 − gm 1 ) − 2 a 2 c ( m 0 + gm 1 ) U 1 � 2 a 2 cr � � r ( r ( ac + m 0 + gm 1 ) 2 + 4 ac ( m 0 + gm 1 )( − r + agm 1 )) + ∗ = m 0 + gm 1 U 2 r exists and it’s stable for r > a 2 c ( m 0 + gm 1 ) ac − m 0 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  17. Results r = 0 . 1 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 1.0 0.8 K(t) 0.6 I(t) 0.4 NI(t) 0.2 100. t 20. 40. 60. 80. Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  18. Results r = 0 . 1 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 I 0.10 0.08 0.06 0.04 0.02 K 0.05 0.10 0.15 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  19. Results r = 0 . 1 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 NI 1.00 0.95 0.90 0.85 0.80 0.75 K 0.05 0.10 0.15 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  20. Results r = 0 . 1 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 NI 1.00 0.95 0.90 0.85 0.80 0.75 I 0.02 0.04 0.06 0.08 0.10 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  21. Results r = 0 . 5 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 1.0 K(t) 0.8 I(t) 0.6 NI(t) 0.4 0.2 100. t 20. 40. 60. 80. Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  22. Results r = 0 . 5 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 I 0.5 0.4 0.3 0.2 0.1 K 0.05 0.10 0.15 0.20 0.25 0.30 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  23. Results r = 0 . 5 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 NI 1.0 0.8 0.6 0.4 0.2 K 0.05 0.10 0.15 0.20 0.25 0.30 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  24. Results r = 0 . 5 , α = 1 . 0 , m 1 = 0 . 05 , U c = 0 . 5 NI 1.0 0. 8 0.6 0.4 0.2 I 0 1 0 2 0 3 0 4 0 5 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  25. Results Effect of increased mortality: r = 0 . 5 , α = 5 . 0 , m 1 = 0 . 05 , U c = 0 . 5 1.0 K(t) 0.8 I(t) 0.6 NI(t) 0.4 0.2 t 20 40 60 80 100 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 11 / 16

  26. Results All four populations (reintroduction of lobsters) dK dt = K ( 1 − K ) − a ( U 1 + U 2 ) K dU 1 U 1 = − b L − m 0 U 1 − gm 1 U 1 + rU 1 U 2 dt U 1 + U 2 + U c dU 2 U 2 = ac ( U 1 + U 2 ) K − b L − m 0 U 2 − rU 1 U 2 dt U 1 + U 2 + U c dL U 1 + U 2 dt = bd L − m 2 L U 1 + U 2 + U c Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  27. Results Important fixed points: 1 1 K ∗ = 2 acr [ r ( ac + m 0 + gm 1 ) � � − 2 acr 2 ( m 0 + gm 1 ) + r 2 ( m 0 + gm 1 ) 2 + a 2 cr ( cr + 4 gm 1 ( m 0 + gm 1 )) − 1 acr − 2 a 2 c ( m 0 + gm 1 ) − r ( m 0 + gm 1 ) U 1 ∗ = � 2 a 2 cr � � − 2 acr 2 ( m 0 + gm 1 ) + r 2 ( m 0 + gm 1 ) 2 + a 2 ( 4 crgm 0 m 1 + cr ( cr + 4 g 2 m 12 )) + U 2 ∗ = m 0 + gm 1 r L ∗ = 0 stable for b < b 0 a 2 cU c b 0 = m 2 � � 1 + d ac − m 0 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  28. Results Important fixed points: 2 K ∗ = 1 − am 2 U c bd − m 2 U 1 ∗ = 0 m 2 U c U 2 ∗ = bd − m 2 1 L ∗ = � ( ac − m 0 )( bd − m 2 ) − a 2 cm 2 U c � ( bd − m 2 ) 2 dU c exists for b > b 0 and it’s stable for b 0 < b < b 1 with stable limit cycle for b > b 1 a 2 cU c b 0 = m 2 � � 1 + d ac − m 0 b 1 : no analytical expression Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  29. Results b = 0 . 05 , d = 0 . 05 , m 2 = 0 . 01 0.6 K(t) 0.5 I(t) 0.4 0.3 NI(t) 0.2 L(t) 0.1 t 60 120 180 240 300 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  30. Results b = 0 . 05 , d = 0 . 05 , m 2 = 0 . 01 NI 0.6 0.5 0.4 0.3 0.2 0.1 K 0.05 0.10 0.15 0.20 0.25 0.30 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  31. Results b = 0 . 05 , d = 0 . 05 , m 2 = 0 . 01 NI 0.6 0.5 0.4 0.3 0.2 0.1 I 0.1 0.2 0.3 0.4 0.5 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  32. Results b = 0 . 05 , d = 0 . 05 , m 2 = 0 . 01 L 0.10 0.08 0.06 0.04 0.02 I 0.1 0.2 0.3 0.4 0.5 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  33. Results b = 0 . 05 , d = 0 . 05 , m 2 = 0 . 01 L 0.10 0.08 0.06 0.04 0.02 NI 0.1 0.2 0.3 0.4 0.5 0.6 Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

  34. Results b = 0 . 5 , d = 0 . 05 , m 2 = 0 . 01 0.6 K(t) 0.5 I(t) 0.4 NI(t) 0.3 0.2 L(t) 0.1 750. t 150. 300. 450. 600. Group 4 (ICTP) II Southern-Summer School on Mathematical Biology 12 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend