antineutron oscillations using a projected
play

antineutron oscillations using a projected UCN source at the WWR-M - PowerPoint PPT Presentation

Experiment on search for neutron- antineutron oscillations using a projected UCN source at the WWR-M reactor A. Fomin Project leader: A. Serebrov PNPI, Gatchina, Russia International Workshop "Probing Fundamental Symmetries and


  1. Experiment on search for neutron- antineutron oscillations using a projected UCN source at the WWR-M reactor A. Fomin Project leader: A. Serebrov PNPI, Gatchina, Russia International Workshop "Probing Fundamental Symmetries and Interactions with UCN“ 1 Mainz, Germany, April 11-15, 2016

  2. Baryon Asymmetry 2

  3. ILL beam experiment 3

  4. ESS beam experiment 4

  5. NNbar via UCN muon veto calorimeter pressure, magnetic shield tracker N  t 2 – discovery potential Storage trap: height 2.5 m, v boundary = 6.8 m/s, diffusion 90 %, abs. in walls 3  10 -5 5

  6. Progress of UCN sources 5 10 PNPI project [17] present 4 10 first test experiments SD 2 pulse mode 3 10 projects with superfluid He LANL-PNPI [8] [15-16] 2 10 ILL [4] ILL [13] -3 ILL [12] 1 UCN density, cm 10 PNPI [3] SD 2 Mainz [9] 0 PNPI 10 PSI-PNPI PNPI [10] PNPI [5] PNPI [6] -1 project 10 ILL first test SD 2 reactor SD 2 in pulse mode SRIAR -2 PNPI experiment test experiment 10 PNPI with SD 2 IAE -3 10 TUM PNPI -4 10 IAE -5 10 -6 10 JINR -7 10 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 years 6

  7. MCNP neutron flux calculation results and heat generation in thermal column of WWR-M reactor at 15 MW Ф=4.5∙10 12 n/( с m 2 s) Ф(  =9 А)=3∙10 10 n/( с m 2 sA) Q He =6 W He Т=1.2 К 19 W LD 2 Т=20 К Al, Q Al =13 W C Т= 30 0 К Pb Т=300 К LD 2 , Q LD2+Al =100 W C, Q C =700 W Pb, Q Pb =15 к W Ф=10 14 n/(cm 2 s) Q=15 MW 7 7

  8. Project of UCN source at reactor WWR-M (PNPI, Gatchina) 8

  9. MC model of the source 6 1 5 2 4 3 ( 1 ) source chamber; ( 2 ) neutron guide; ( 3 ) UCN trap; ( 4 ) membrane in front of the inlet to the UCN trap;( 5 ) pipe for filling the chamber; ( 6 ) pipeline for evacuation of the chamber (UCN gravitational shutter) 9

  10. UCN density 6 10 source -3 UCN density, cm 5 10 trap 35 l 4 10 trap 350 l 3 10 0,7 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5 T, K  He II , s 6.7 100 23.3 600 10 Production of the source 10 8 UCN/s.

  11. What is the probability for UCÑ to be reflected? 2 U     0 1 1 (1 i ) E   R U     0 1 1 (1 ) i E  W     U U iW 0 U 0 11

  12. We can consider two cases: R  0 1. (pessimistic case)     R R ( . ) . 0 2 0 8 2. (optimistic case)  U iW for n 0  U iW for n 0 12

  13. Reflection coefficient for UCÑ 1,0 0,9 ~ ~ 0,8 E  /U 0 =0.1 ~ ~ E  /U 0 =0.15 0,7 ~ ~ E  /U 0 =0.25 0,6 0,5 ~ R ~ ~ E  /U 0 =1 0,4 0,3 0,2 ~  =0.2 0,1 0,0 0 1 2 3 4 5 6 7 8 9 10 ~  13

  14. UCN number in the trap for different storage trap radius 10 5x10 10 4x10 number of UCN in the trap 10 3x10 10 2x10 10 1x10 0 0 1 2 3 4 5 6 storage trap radius, m Storage trap: height 2.5 m, v boundary = 6.8 m/s, diffusion 90 %, abs. in walls 3  10 -5 14

  15. UCN density for different storage trap radius 7000 maximum UCN density near the bottom 6000 5000 3 of the storage trap, n/cm 4000 3000 2000 1000 0 0 1 2 3 4 5 6 storage trap radius, m Storage trap: height 2.5 m, v boundary = 6.8 m/s, diffusion 90 %, abs. in walls 3  10 -5 15

  16. UCN time of flight for different storage trap radius 600000 1 m 2 m density of distribution, arb. un. 500000 3 m 4 m 5 m 400000 6 m 300000 200000 100000 0 0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 t, s Storage trap: height 2.5 m, v boundary = 6.8 m/s, diffusion 90 %, abs. in walls 3  10 -5 16

  17. N  t 2 for different storage trap radius 11 1,6x10 11 1,4x10 11 1,2x10 11 1,0x10 2 , n·s 10 8,0x10 N·t 10 6,0x10 10 4,0x10 10 2,0x10 0,0 0 1 2 3 4 5 6 storage trap radius, m Storage trap: height 2.5 m, v boundary = 6.8 m/s, diffusion 90 %, abs. in walls 3  10 -5 17

  18. Oscillation period     2 ( ) N t T   nn N ~ 3 T years   0.9 N   ( at 90% CL) 0 2.3     (1 2) 10 s (90% CL) 9 nn 18

  19. UCN facilities at reactor WWR-M (preliminary)  n , Gravitrap nEDM  n , magnetic trap n  ñ n  n  19

  20. UCN facilities at reactor WWR-M (preliminary) 20

  21. Conclusion 1. Optimal size of the storage trap for NNbar oscillation experiment at reactor WWR-M: height 2.5 m, radius 3 m. 2. Increase of the experiment sensitivity is about 20  80 times to ILL level. 3. Oscillation period for 3 years:     (1 2) 10 s (90% CL) 9 nn 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend