andreev and majorana
play

Andreev and Majorana bound states in quantum dots Alfredo Levy - PowerPoint PPT Presentation

Andreev and Majorana bound states in quantum dots Alfredo Levy Yeyati In collaboration with: Alvaro Martn-Rodero, Bernd Braunecker (UAM) Reinhold Egger, Alex Zazunov, Roland Htzen (Dusseldorf) Exp results: Philippe Joyez (Saclay)


  1. Andreev and Majorana bound states in quantum dots Alfredo Levy Yeyati In collaboration with: Alvaro Martín-Rodero, Bernd Braunecker (UAM) Reinhold Egger, Alex Zazunov, Roland Hützen (Dusseldorf) Exp results: Philippe Joyez (Saclay) Chernogolovka 13/09/2012

  2. e QW 2e S h Andreev states spectroscopy in CNTs Search for Majorana states in semiconducting nanowires J.D. Pillet et al. Nature Phys. (2010) V. Mourik et al. Science (2012) Effect of e-e interactions Charging energy in QD regime

  3. Outline Andreev states in QDs The superconducting Anderson model Experimental results – Fit by model calculations NRG vs mean field results Majorana bound states in QDs The single charge Majorana transistor Transport properties: Known limits Weak blockade regime General Green functions formalism Zero band width limit Equation of motion method Master equation approach Conclusions

  4. QD regime: the superconducting Anderson model     Single Level  0  U     2 2          H n U n n t c d h . c . H H  0      k k L R 0 L R   k ,           i / 2 H c c e c c h . c .      L , R k k k k k  k , k p -junction behavior!         , , U , , , eV L R 0 L R Equilibrium (V=0): Kondo vs Pairing   crossover T K Energy scale : ~  Energy scale : ~ Review: A. Martín-Rodero & ALY, Adv. Phys. (2011) k b T K

  5. Spectral properties: Andreev bound states

  6. Experimental results: gate voltage dependence

  7. ABS in SC Anderson model: Hartree Fock approximation           H n U n n t c d h . c . H H     0 k k L R   k ,     . 0 5 0     1,0 0,50 U n   E ex 0 . 25   0 0,5 I/(4 p e  /h) 0,25 HF approx. E/      0,0 0,00 U d d   ind -0,25 -0,5 E ex -0,50 -1,0 1,0    0,50 E ex 0 . 75 2 I/(4 p e  /h) Breaking spin 0,5  n     0,25 n E/  symmetry     0,0 0,00 -0,25 -0,5 -0,50 -1,0 1,0 0,50   E ex 1 . 50     I/(4 p e  /h) 0,5 E 0,25 E/  Minimal model   ex 0,0 0,00   0 -0,25 -0,5 ind -0,50 -1,0 (pheonomenological parameter) 0,0 0,5 1,0 1,5 2,0 0,5 1,0 1,5 2,0  / p  / p E. Vecino, A. Martín-Rodero, A. Levy Yeyati, PRB 68 , 035105 (2003)

  8. Fitting the experimental data: gate voltage dependence Exp. Model J.D. Pillet, Ch. Quay, C. Bena, A. Levy Yeyati and P. Joyez, Nature Phys. (2010)

  9. ABS in SC Anderson model: Mean field vs “ exact ” results A. Martín-Rodero & ALY, J. Phys: Cond. Matter (2012)

  10. Numerical Renomalization Group: basic ideas D Logarithmic discretization Map into semi-infinite chain V V V V 0 1 2 4    N / 2 V N Iterative diagonalization Truncation: #states < N c

  11. ABS: HF vs NRG results   4  Dashed: HF, Full: NRG N 300 c p phase: 4 ABSs

  12. ABS: HF vs NRG results Dashed: HF, Full: NRG p phase

  13. Symmetric case Dashed: HF, Full: NRG

  14. Quantum dots with Majonana bound states A. Zazunov, ALY & R. Egger, PRB (2011) R. Hützen, A. Zazunov, B. Braunecker, ALY & R. Egger, arXiv:1206.3912

  15. Majorana generation: induced superconductivity in normal or topological semiconducting wires Review: J. Alicea, arXiv:1202.1293 V. Mourik et al. (Delft) Science (2012) Helical states in TI nanowires R. Egger, A. Zazunov, and ALY, PRL (2010)

  16. The Majorana Single Charge Transistor g L g R    E , , T c L , R “Non - local” fermion Cooper pairs number

  17. Known limits Bolech & Demler, PRL (2007) “ resonant Andreev reflection ” L. Fu, PRL (2010) “ electron teleportation ”

  18. Model Hamiltonian A. Zazunov, A.L.Y. & R. Egger, PRB (2011) Equivalent representation: Cooper pairs + d fermion  N  ( N , 0 ) ( 1 , 1 )  ( N , 1 ) ( N , 0 ) “ anomalous ” tunneling (Cooper pair splitting) “normal” e tunneling

  19. Weak blockade regime A. Zazunov, A.L.Y. & R. Egger, PRB (2011) Relevant dregree of freedom Keldysh path integral formulation Second order expansion equivalent to semi-classical Langevin equation Current in “P(E)” form

  20. Keldysh GFs formulation: general current formula Define Nambu spinors Exact current formula!

  21. Linear conductance: evaluation within ZBWM  d e i   d   R L 

  22. Evaluation using EOM (Equation of Motion method) Truncation Self-consistency

  23. EOM results e-spectral density “h” -spectral density

  24. Crossover of peak conductance

  25. Finite temperature: Master equation approach  ( EC )  j , Q Q  ( seq )  ( seq )   j , Q Q 1   j , Q Q 1 Q-2 Q-1 Q Q+1 Q+2  ( AR )  ( AR )     j , j ' , Q Q 2 j , j ' , Q Q 2

  26. Results from Master equation approach  2  T CB oscillations Peak conductance

  27. Finite voltage sideband peaks

  28. Conclusions Andreev bound states in QDs * Qualitative description of CNTs results using phenomenological models   * Validity of mean field (HFA): good agreement with NRG for T K Majorana Single Charge Transistor * Insight from several different methods (WB, ZBWM, EOM, ME) * Crossover of peak conductance from 2e 2 /h to e 2 /h as a function of E c /  * Coulomb blockade oscillations and side band peaks in non-linear conductance * Work in progress: consequences for non-local transport (crossed Andreev)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend