temperature dependence of andreev spectra in a
play

Temperature dependence of Andreev spectra in a superconducting - PowerPoint PPT Presentation

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Mart n-Rodero, A. K. H uttel, and C. Strunk Phys. Rev. B 89 , 075428 (2014) (TT 73.5), 2.


  1. Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Mart´ ın-Rodero, A. K. H¨ uttel, and C. Strunk Phys. Rev. B 89 , 075428 (2014) (TT 73.5), 2. April 2014, DPG Fr¨ uhjahrstagung Dresden

  2. CNT V g 400nm CN T back gate the setup • “traditional” nanotube device fabrication: metal on top • 3nm Pd / 60nm Nb “fork” electrode • 1nm Ti / 60nm Al tunnel probe, weakly coupled • Andreev bound states form between branches of Nb fork Niobium: B crit , T crit , ∆ Nb • tunnel probe “senses” local density of states ⟶ much larger parameter space A. Kumar et al. , PRB 89 , 075428 (2014)

  3. 6.5 V (V) 0.06 0.04 0.02 (e²/h) dI/dV 0.00 0.0 6.0 5.5 5.0 g sd B =2T V (mV) sd V (mV) -2.5 4.5 -2.5 5.0 5.0 2.5 2.5 0.0 B =0T differential conductance — overview • B = 0 T: supercond. energy gap and ABS features clearly visible around zero bias • B = 2 T: return to regular Coulomb blockade behaviour • disordered system, no clear indications of shell filling A. Kumar et al. , PRB 89 , 075428 (2014)

  4. abs + Δ (probe) s Δ Al ε 0.5 = (fork) E (probe) F Nb abs - ε lower ABS: V g (V) -0.5 0.0 4.60 4.65 V DOS 2∆ Nb +2∆ Al 0.06 Nb 0.00 -0.06 4.55 DOS F Δ Q-dot Al detail analysis of ABS features (I) • “non-crossing” ABS ε abs ( V g ) ≥ 0 sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode [note: needs finite DOS in BCS gap of + ε ab E probe electrode] Al eV sd • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  5. eV sd DOS s Δ Al ε 0.5 abs E (probe) F Nb Q-dot Al (fork) abs - ε DOS V g (V) -0.5 0.0 4.60 4.65 V replica: 2∆ Nb +2∆ Al 0.06 Nb 0.00 -0.06 4.55 = F Δ (probe) detail analysis of ABS features (I) • “non-crossing” ABS ε abs ( V g ) ≥ 0 sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode [note: needs finite DOS in BCS gap of + ε ab E probe electrode] • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  6. abs,2 Δ s,2 Δ Al ε 0.5 + = + ε ab (probe) E (probe) F Nb Q-dot Al abs,2 (fork) 0.06 -0.5 0.0 4.60 4.65 V DOS 2∆ Nb +2∆ Al V g (V) 0.00 -0.06 4.55 DOS F Δ Nb - ε 2nd ABS: detail analysis of ABS features (I) • “non-crossing” ABS ε abs ( V g ) ≥ 0 sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode [note: needs finite DOS in BCS gap of E probe electrode] Al eV sd • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  7. = Δ s Δ Al ε abs + 5.40 abs (fork) E (probe) F Nb (probe) lower ABS: 0.00 5.44 0.5 -0.5 0.0 V g (V) 0.05 0.05 - - ε V DOS DOS F Δ Nb Q-dot Al detail analysis of ABS features (II) • “crossing” ABS: 0- π phase transition ε abs ( V g ) passes through zero sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode + ε ab [note: needs finite DOS in BCS gap of E probe electrode] Al eV sd • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  8. abs eV sd DOS s Δ Al ε 5.40 E (probe) F Nb Q-dot Al (fork) abs - ε DOS 0.05 5.44 0.5 -0.5 0.0 V g (V) 0.05 0.00 Nb - V replica: = F Δ (probe) detail analysis of ABS features (II) • “crossing” ABS: 0- π phase transition ε abs ( V g ) passes through zero sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode + ε ab [note: needs finite DOS in BCS gap of E probe electrode] • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  9. + Δ s,2 Δ Al ε abs,2 5.40 = + ε ab (probe) E (probe) F Nb Q-dot Al abs,2 (fork) 0.00 5.44 0.5 -0.5 0.0 V g (V) 0.05 0.05 - V DOS DOS F Δ Nb - ε 2nd ABS: detail analysis of ABS features (II) • “crossing” ABS: 0- π phase transition ε abs ( V g ) passes through zero sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe • weak replica ( ○ ): ABS at Fermi edge of probe electrode [note: needs finite DOS in BCS gap of E probe electrode] Al eV sd • second resonance ( ◇ ): second ABS, aligned as ( ⭐ )! A. Kumar et al. , PRB 89 , 075428 (2014)

  10. -8 E / ∆ 0.5 -12 ε /∆ 4 0 -4 E / ∆ -12 0.0 ε /∆ 4 0 -4 -8 0.0 -0.5 0.5 -0.5 gate voltage dependence of the bare ε abs ( V g ) • NRG calculations for a two-channel superconducting Anderson model • two local levels couple via two channels to the superconductor • crossing / non-crossing controlled by ratio T K ( E C , Γ )/ ∆ A. Kumar et al. , PRB 89 , 075428 (2014)

  11. 6.24 6.28 800 mK 30 mK 6.28 6.24 6.28 6.24 6.28 1 K 6.24 400 mK 0.00 -0.05 0.05 (e 2 /h) dI/dV 0.0 0.5 0.5 V (V) g temperature evolution — experiment V sd (mV) • measurement: distinct change of satellite curvature above 400 mK • thermal excitation? A. Kumar et al. , PRB 89 , 075428 (2014)

  12. e V sd (meV) 6.24 Δ Al meV −0.2 0 0.2 V g (V) 6.28 eV satellite V g (V) 6.24 6.28 6.28 0.5 -0.5 eV satellite eV main 6.24 eV −0.1 0 0.1 eV satellite eV main eV satellite - Δ Δ Al main Al -(eV - Δ ) main Al 0 30mK, low-temperature replica V sd (mV) • distance between main resonance and satellite constant, ∼ ∆ Al • “shift” ⟶ peak positions coincide • eV main − ∆ Al = eV satellite • this reduces all gate dependence to ε abs ( V g ) A. Kumar et al. , PRB 89 , 075428 (2014)

  13. eV main eV main 0 6.28 6.24 0.2 0 −0.2 eV main satellite Al 2 Δ - eV e V sd (meV) eV satellite eV main eV satellite -0.5 satellite Al ) -(2 Δ - eV 6.28 6.24 V g (V) meV 6.28 6.24 V g (V) 0.2 0 −0.2 0.5 800mK, high-temperature replica V sd (mV) • “flip and shift” ⟶ again, peak positions coincide • need a minus sign from somewhere! • 2∆ Al − eV satellite = eV main • this reduces all gate dependence to ε abs ( V g ) • why? ... A. Kumar et al. , PRB 89 , 075428 (2014)

  14. Δ ε lower ABS: Q-dot Al Nb F E (probe) 0.5 DOS = abs + Δ Al (probe) F -0.5 0.0 V 6.28 V g (V) 6.24 Δ s Nb - ε abs DOS (fork) detail analysis of ABS features (III) sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe (same as before) • weak replica, high temperature ( □ ): excited ABS aligned at BCS edge in Al tunnel probe + ε ab E • indeed, Al eV sd 2∆ Al − eV satellite = eV main A. Kumar et al. , PRB 89 , 075428 (2014)

  15. (fork) ε Δ = - 6.28 6.24 DOS DOS (probe) 0.5 high-T sat.: Q-dot Al Nb Al F -0.5 0.0 V V g (V) sd Δ s Nb - ε abs abs eV detail analysis of ABS features (III) sd (mV) • main resonance ( ⭐ ): ABS aligned with BCS edge in Al tunnel probe (same as before) • weak replica, high temperature ( □ ): excited ABS aligned at BCS edge in Al tunnel probe + ε ab E • indeed, 2∆ Al − eV satellite = eV main A. Kumar et al. , PRB 89 , 075428 (2014)

  16. 0.5 0 ε /∆ 0.5 0 - 0.5 0.5 0 - 0.5 1 K - 0.5 0.5 - 0.5 400 mK 0.0 -0.5 0.5 800 mK 30 mK 0.00 -0.05 0.05 (e 2 /h) dI/dV 0 temperature evolution — model calculation E / ∆ • mean field description of the superconducting Anderson model • two superconducting leads with two different gap parameters • only temperature-dependent parameter: ∆ Al ( T ) • change of satellite curvature above 400 mK nicely reproduced A. Kumar et al. , PRB 89 , 075428 (2014)

  17. (f) - 0.5 (a) (h) 0.5 -0.5 0.0 - 0.5 0 0.5 0.5 800 mK - 0.5 0 0.5 - 0.5 0 0.5 ε /∆ g 0 (e) 30 mK (d) (e 2 /h) (b) (c) (g) V (V) 1 K 0.5 0.5 0.0 dI/dV 0.05 6.28 -0.05 0.00 6.24 6.28 6.24 6.28 6.24 6.28 6.24 400 mK Thank you! — Questions? V sd (mV) E / ∆ Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar et al. , Phys. Rev. B 89 , 075428 (2014)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend