anderson localization from classical trajectories
play

Anderson Localization from Classical Trajectories Piet Brouwer - PowerPoint PPT Presentation

Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University With: Alexander Altland (Cologne) Support: NSF, Packard Foundation Quantum Transport Manifestations of the wave


  1. Anderson Localization from Classical Trajectories Piet Brouwer Laboratory of Atomic and Solid State Physics Cornell University With: Alexander Altland (Cologne) Support: NSF, Packard Foundation

  2. Quantum Transport Manifestations of the wave nature of electrons in electrical transport “cavity” “antidot lattice” • shot noise • weak localization • conductance fluctuations … 1 μ m • Anderson localization Originally discovered for sample sample disordered conductors. This talk: ballistic conductors no scattering off point-like impurities I

  3. Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G [ e 2 / h ] | A µ | 2 + � � A µ A ∗ G = ν µ µ � = ν δG B [10 -4 T] Mailly and Sanquer (1991) “Hikami box” in Hik out Hik = + + “Cooperon”

  4. Weak localization disordered metals Nonzero (negative) ensemble average δ G at zero magnetic field G [ e 2 / h ] | A µ | 2 + � � A µ A ∗ G = = ν µ µ � = ν δG B [10 -4 T] ν Hik = + Hik μ + permutations ‘Hikami box’ “Cooperon”

  5. Weak localization ballistic conductors • Theory based on diffractive scattering off point-like impurities not possible; Hik = + … “ballistic” “disordered”

  6. Weak localization ballistic conductors • Theory based on diffractive α scattering off point-like β impurities not possible; Instead: Semiclassics g = � A α A β e i ( S α −S β ) / � , α,β • α and β have equal angles upon entrance/exit • S α,β : classical action • A α,β : stability amplitudes Jalabert, Baranger, Stone (1990) Needed: Careful summation over Argaman (1995) classical trajectories α , β . Aleiner, Larkin (1996) Richter, Sieber (2001,2002) Heusler, Müller, Braun, Haake (2006)

  7. Weak localization ballistic conductors g � A α A β e i ( S α −S β ) / � , ∼ in out α,β t enc = 1 λ ln S cl Weak localization: Trajectory pairs | ∆ S| with small-angle self encounter Sieber, Richter (2001) α also: Aleiner, Larkin (1996) β Encounter duration t enc = τ E = 1 λ ln S cl � If τ E << dwell time: Recover weak localization correction of disordered metal “ballistic Hikami box” Aleiner, Larkin (1996) Richter, Sieber (2002) Heusler et al . (2006) Brouwer (2007)

  8. Beyond weak localization ballistic conductors g � A α A β e i ( S α −S β ) / � , ∼ α,β One or more small-angle self encounters • shot noise • conductance fluctuations Braun et al. (2006) • quantum pump • full counting statistics Braun et al. (2006) Whitney and Jacquod (2006) • time delay Brouwer and Rahav (2006) • … Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) … If τ E << dwell time: Recover quantum corrections of disordered metals

  9. Beyond weak localization ballistic conductors g � A α A β e i ( S α −S β ) / � , ∼ α,β One or more small-angle self encounter • shot noise • conductance fluctuations Braun et al. (2006) • quantum pump • full counting statistics Braun et al. (2006) Whitney and Jacquod (2006) • time delay Brouwer and Rahav (2006) • … Rahav and Brouwer (2006) Berkolaiko et al. (2007) Kuipers and Sieber (2007) If τ E << dwell time: Recover quantum But all of these are corrections of disordered metals perturbative effects!

  10. Non-perturbative effects Level correlations: Form factor K ( t ) for | t | > τ H Heusler, Müller, Altland, Braun, Haake (2007) “inspired by field theoretical formulation of RMT correlation functions” Heusler et al. (2007)

  11. Non-perturbative effects Level correlations: Form factor K ( t ) for | t | > τ H Heusler, Müller, Altland, Braun, Haake (2007) “inspired by field theoretical formulation of RMT correlation functions” Heusler et al. (2007) Today: Anderson localization … inspired by theory of Anderson localization in disordered metals • one-dimensional nonlinear sigma model Efetov and Larkin (1983) • scaling approach Dorokhov (1982) Mello, Pereyra, Kumar (1988)

  12. Anderson localization disordered metals Model system: array of “quantum dots” Dots are connected via ballistic contacts with conductance g c >> 1. → ∞ Take limit g c while keeping ratio g c / n fixed. Disordered quantum dots: random matrix theory Localization in quantum dot array: Mirlin, Müller-Groeling, Zirnbauer (1994) Brouwer, Frahm (1996)

  13. Anderson localization disordered metals � � S 11 ( n ) S 12 ( n ) S ( n ) = S 21 ( n ) S 22 ( n ) interdot conductance: g c T ( n ) = S 12 ( n ) S † 12 ( n ) T m ( n ) = tr T ( n ) m : conductance of array of n dots g ( n ) = T 1 ( n ) random matrix theory: recursion relation for moments of the T i : δ � T 1 � = � T 1 ( n ) � − � T 1 ( n − 1) � (no time-reversal symmetry, = − 1 β =2) � T 1 ( n − 1) 2 � + O ( g − 2 c ) g c Replace difference equation by differential equation: ∂L � T 1 � = − 2 ∂ ξ : “localization length” ξ � T 2 1 � L/ξ = n/ 2 g c

  14. Anderson localization disordered metals � S 11 ( n ) S 12 ( n ) � S ( n ) = S 21 ( n ) S 22 ( n ) T ( n ) = S 12 ( n ) S † 12 ( n ) T interdot conductance: g c T m ( n ) = tr T ( n ) m general recursion relation: � n � � n � � n � = − 1 � � � i k T 1 T i m δ T i m g c k =1 m =1 m =1 i k − 1 n � n � + 1 � � � i k ( T j ( T i k − j − T i k − j +1 )) T i m g c k =1 j =1 m =1 m � = k n k − 1 � n � + 2 � � � + O ( g − 2 i k i l ( T i k + i l − T i k + i l +1 ) T i m c ) g c k =1 l =1 m =1 m � = k,l

  15. Anderson localization disordered metals � S 11 ( n ) S 12 ( n ) � S ( n ) = S 21 ( n ) S 22 ( n ) T ( n ) = S 12 ( n ) S † 12 ( n ) T T m ( n ) = tr T ( n ) m � n � � n � interdot conductance: g c � n � = − 1 � � � i k T 1 T i m δ T i m g c k =1 m =1 m =1 n i k − 1 � n � + 1 � � � i k ( T j ( T i k − j − T i k − j +1 )) T i m g c k =1 j =1 m =1 m � = k n k − 1 � n � + 2 � � � + O ( g − 2 i k i l ( T i k + i l − T i k + i l +1 ) T i m c ) g c k =1 l =1 m =1 Transform into differential equation for generating function: � 2 + (cos( θ 3 ) − 1) T � �� F 2 ( θ 1 , θ 3 ) = det Description equivalent to 2 + (cosh( θ 1 ) − 1) T existing theory of localization ∂LF 2 = 2 ∂ 1 ∂ J ( θ 1 , θ 3 ) ∂ � F 2 , in quantum wires ξ J ( θ 1 , θ 3 ) ∂θ j ∂θ j j =1 , 3 Efetov and Larkin (1983) sin( θ 3 ) sinh( θ 1 ) J ( θ 1 , θ 3 ) = (cosh( θ 1 ) − cos( θ 3 )) 2 . Dorokhov (1982) Mello, Pereyra, Kumar (1988)

  16. Anderson localization disordered metals � S 11 ( n ) S 12 ( n ) � S ( n ) = S 21 ( n ) S 22 ( n ) T ( n ) = S 12 ( n ) S † 12 ( n ) T T m ( n ) = tr T ( n ) m � n � � n � interdot conductance: g c � n � = − 1 � � � i k T 1 T i m δ T i m g c k =1 m =1 m =1 n i k − 1 � n � + 1 � � � i k ( T j ( T i k − j − T i k − j +1 )) T i m g c k =1 j =1 m =1 m � = k n k − 1 � n � + 2 � � � + O ( g − 2 i k i l ( T i k + i l − T i k + i l +1 ) T i m c ) g c k =1 l =1 m =1 Can one derive the same set of recursion relations from semiclassics?

  17. Anderson localization ballistic conductors � � S 11 ( n ) S 12 ( n ) S ( n ) = S 21 ( n ) S 22 ( n ) T ( n ) = S 12 ( n ) S † 12 ( n ) interdot conductance: g c T m ( n ) = tr T ( n ) m Can we show that δ � T 1 � = � T 1 ( n ) � − � T 1 ( n − 1) � = − 1 � T 1 ( n − 1) 2 � + O ( g − 2 c ) g c from semiclassical expression for T 1 ? � A α A β e i ( S α −S β ) / � T 1 = α,β

  18. Anderson localization ballistic conductors first n -1 dots first n -1 dots n n � A α A β e i ( S α −S β ) / � T 1 = α α,β α=β m =1 β • α and β each have m segments in n th dot, α 1 ,…, α m ; β 1 ,…, β m . α α=β m =2 β α α=β β m =3

  19. Anderson localization ballistic conductors first n -1 dots first n -1 dots n n � A α A β e i ( S α −S β ) / � T 1 = α α,β α=β α 1 = β 1 α 1 = β 1 m =1 β • α and β each have m segments in n th dot, α 1 = β 1 α 1 ,…, α m ; β 1 ,…, β m . α 1 = β 1 α α=β m =2 β To leading order in g c : α 2 = β 2 • diagonal approximation in α 2 = β 2 n th dot α 2 = β 2 α 2 = β 2 • pair α i with β i , i =1,…, m α α=β α 1 = β 1 β m =3 α 3 = β 3 No restriction on number of α 3 = β 3 α 1 = β 1 small-angle self encounters in first n -1 dots

  20. Anderson localization ballistic conductors first n -1 dots first n -1 dots n n α α=β 1 α 1 = β 1 α 1 = β 1 m =1 β 2 � T 1 ( n − 1) � α 1 = β 1 α 1 = β 1 α α=β 1 m =2 β � T 1 ( n − 1) R 1 ( n − 1) � 4 g c α 2 = β 2 α 2 = β 2 reflection: R 1 = g c − T 1 α 2 = β 2 α 2 = β 2 α α=β α 1 = β 1 1 β � T 1 ( n − 1) R 1 ( n − 1) 2 � m =3 8 g 2 c α 3 = β 3 α 3 = β 3 α 1 = β 1

  21. Anderson localization ballistic conductors α α=β 1 β m =1 2 � T 1 ( n − 1) � α α=β 1 β m =2 � T 1 ( n − 1) R 1 ( n − 1) � 4 g c reflection: R 1 = g c − T 1 α α=β 1 β � T 1 ( n − 1) R 1 ( n − 1) 2 � m =3 8 g 2 c … + ∞ 1 � T 1 ( n − 1) R 1 ( n − 1) m − 1 � � � T 1 ( n ) � = 2 m g m − 1 c m =1 � g c T 1 ( n − 1) � = 2 g c − R 1 ( n − 1) − 1 � T 1 ( n − 1) 2 � + O ( g − 2 = � T 1 ( n − 1) � c ) g c

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend