robot localization localization robot and and kalman
play

Robot Localization Localization Robot and and Kalman Filters - PowerPoint PPT Presentation

Robot Localization Localization Robot and and Kalman Filters Filters Kalman Rudy Negenborn Negenborn Rudy rudy@negenborn.net rudy@negenborn.net August 26, 2003 August 26, 2003 Outline Outline Robot Robot Localization


  1. Robot Localization Localization Robot and and Kalman Filters Filters Kalman Rudy Negenborn Negenborn Rudy rudy@negenborn.net rudy@negenborn.net August 26, 2003 August 26, 2003

  2. Outline Outline � Robot Robot Localization Localization � � Probabilistic Probabilistic Localization Localization � � Kalman Kalman Filters Filters � � Kalman Kalman Localization Localization � � Kalman Kalman Localization Localization with with Landmarks Landmarks � Robot Localization and Kalman Filters 2 26-9-2003

  3. Robot Localization Robot Localization � Localization Localization a a key key problem problem � � Available Available location information location information � � Relative Relative Measurements Measurements � � Driving Driving: : wheel wheel encoders encoders, , accerelometers accerelometers, gyroscopes , gyroscopes � � Frequent Frequent, but , but increasing increasing error error � � Absolute Absolute Measurements Measurements � � Sensing Sensing: GPS, vision, laser, landmarks : GPS, vision, laser, landmarks � � Less Less frequent frequent, but , but bounded bounded error error � Robot Localization and Kalman Filters 3 26-9-2003

  4. Probabilistic Localization Localization Probabilistic � Probabilistic Probabilistic approach approach � � Consider Consider whole whole space space of of locations locations � � Belief Belief � � Bel( Bel( x x k ) = P( x x k | d 1 , ... , d d k ) k ) = P( k | d 1 , ... , k ) � � Get Get belief belief as as close close to real distribution as possible to real distribution as possible � � Prior Prior Belief Belief � - ( Bel - � Bel ( x x k ) = P( x x k | z 1 , a 1 , ... , z k , a k ) k ) = P( k | z 1 , a 1 , ... , z 1 , a 1 ) � k- -1 k- -1 � Posterior Posterior Belief Belief � + ( Bel + � Bel ( x x k ) = P( x x k | z 1 , a 1 , ... , z k , a k , z z k ) k ) = P( k | z 1 , a 1 , ... , z 1 , a 1 , k ) � k- -1 k- -1 Robot Localization and Kalman Filters 4 26-9-2003

  5. Probabilistic Localization Localization Probabilistic � Localization Localization equations equations: : � � Bel Bel - - ( ( x x k ) = P( P( x x k | z 1 , a 1 , ..., z k , a k ) k ) = k | z 1 , a 1 , ..., z 1 , a 1 ) � k- -1 k- -1 Markov ∫ P( = ∫ P( x x k | a k , x k )· · Bel Bel + + ( x ( x k ) dx k = k | a 1 , x 1 ) 1 ) dx k- -1 k- -1 k- -1 k- -1 1 Assumption � Bel Bel + + ( ( x x k ) = P( P( x x k | z 1 , a 1 , …, z k , a k , z z k ) k ) = k | z 1 , a 1 , …, z 1 , a 1 , k ) � k- -1 k- -1 P( z P( z k k | | x x k k ) ) Bel Bel - - ( ( x x k k ) ) = P( z z k | z 1 , a 1 , …, z k , a k ) P( k | z 1 , a 1 , …, z 1 , a 1 ) k- -1 k- -1 � Implementation Implementation Issues Issues: : � � Motion model: Motion model: P( P( x x k | a k , x k ) k | a 1 , x 1 ) � k- -1 k- -1 � Measurement Measurement model: model: P( P( z z k | x x k ) k | k ) � � Representation Representation of of belief belief � Robot Localization and Kalman Filters 5 26-9-2003

  6. Kalman Filters Filters Kalman � Representation of belief Representation of belief � � Gaussian function Gaussian function � � Mean and ( Mean and (co)variance co)variance � � Initial belief: Initial belief: Bel Bel( x ( x 0 ) = N( x 0 , P 0 ) 0 ) = N( x 0 , P 0 ) � � Motion model Motion model � ∼ N( 0, k ∼ � x x k = Ax k + Ba k + w k , where w k N( 0, Q Q k ) k = Ax 1 + Ba 1 + w 1 , where w k ) � k- -1 k- -1 k- -1 P( x k |a k-1 , x k-1 ) = N( Ax k-1 , Q k ) � Measurement model Measurement model � ∼ N( 0, k ∼ � z z k = Hx Hx k + v v k , where v v k N( 0, R R k ) k = k + k , where k ) � P( z k |x k ) = N( Hx k, R k ) Robot Localization and Kalman Filters 6 26-9-2003

  7. Kalman Filters Filters Kalman � Representation of belief Representation of belief � � Gaussian function Gaussian function � � Mean and ( Mean and (co)variance co)variance � � Initial belief: Initial belief: Bel Bel( x ( x 0 ) = N( x 0 , P 0 ) 0 ) = N( x 0 , P 0 ) � � Motion model Motion model � ∼ N( 0, k ∼ � x x k = Ax k + Ba k + w k , where w k N( 0, Q Q k ) k = Ax 1 + Ba 1 + w 1 , where w k ) � k- -1 k- -1 k- -1 � P( P( x x k |a k , x k ) = N( Ax x k , Q Q k ) k |a 1 , x 1 ) = N( A 1 , k ) � k- -1 k- -1 k- -1 � Measurement model Measurement model � ∼ N( 0, k ∼ � z z k = Hx Hx k + v v k , where v v k N( 0, R R k ) k = k + k , where k ) � � P( P( z z k |x k ) = N( Hx Hx k R k ) k |x k ) = N( , R k ) � k, Robot Localization and Kalman Filters 7 26-9-2003

  8. Kalman Filters Filters Kalman - ( Bel - - - P - - ^ ^ � Prior belief: Prior belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) P k x � k k Prior localization estimate: Prior uncertainty: : + ( : Bel + + + P + + ^ ^ � Posterior Posterior belief belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) P k x � k k Posterior localization estimate: Posterior uncertainty: Robot Localization and Kalman Filters 8 26-9-2003

  9. Kalman Filters Filters Kalman - ( Bel - - - P - - ^ ^ � Prior belief: Prior belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) P k x � k k - k - ^ ^ � Prior location Prior location estimate estimate: : x k x � - - P k � Prior Prior uncertainty uncertainty: : P � k + ( : Bel + + + P + + ^ ^ � Posterior Posterior belief belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) P k x � k k + k + ^ ^ x k � Posterior location estimate: Posterior location estimate: x � + + � Posterior uncertainty: Posterior uncertainty: P k P � k Robot Localization and Kalman Filters 9 26-9-2003

  10. Kalman Filters Filters Kalman - ( Bel - - P - k - - ^ ^ x k � Prior belief: Prior belief: Bel ( x x k ) = N( , ) x P k k ) = N( , ) � k - + k - + ^ ^ ^ ^ ^ ^ x k = A· · x k + B· · x = A x + B a k a � � k- -1 1 k- -1 1 - + - + T + B T + Q = A· · · A A T + B· · · B B T + Q k = A · · P k P P k U k U P � � k- -1 1 k k- -1 1 k- -1 1 Robot Localization and Kalman Filters 10 26-9-2003

  11. Kalman Filters Filters Kalman - ( Bel - - P - k - - ^ ^ x k � Prior belief: Prior belief: Bel ( x x k ) = N( , ) x P k k ) = N( , ) � k - + k - + ^ ^ ^ ^ ^ ^ x k = A· · x k + B· · x = A x + B a k a � � k- -1 1 k- -1 1 Last relative Prior location Posterior measurement estimate location estimate - + - + T + B T + Q = A· · · A A T + B· · · B B T + Q k = A · · P k P P k U k U P � � k- -1 1 k k- -1 1 k- -1 1 Robot Localization and Kalman Filters 11 26-9-2003

  12. Kalman Filters Filters Kalman - ( Bel - - P - k - - ^ ^ x k � Prior belief: Prior belief: Bel ( x x k ) = N( , ) x P k k ) = N( , ) � k - + k - + ^ ^ ^ ^ ^ ^ x k = A· · x k + B· · x = A x + B a k a � � k- -1 1 k- -1 1 Last relative Prior location Posterior measurement estimate location estimate - + - + T + B T + Q = A· · · A A T + B· · · B B T + Q k = A · · P k P P k U k U P � � k- -1 1 k k- -1 1 k- -1 1 Motion uncertainty Relative Posterior Prior measurement uncertainty uncertainty uncertainty Robot Localization and Kalman Filters 12 26-9-2003

  13. Kalman Filters Filters Kalman + ( Bel + + P + k + + ^ ^ � Posterior belief: Posterior belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) x P k � k - - + k - k - k + ^ ^ ^ ^ ^ ^ x k x k x k = + K = + x K k k · · ( ( z z k k − H − H· ) · ) x x � � - - - - T + � K K k = · P k · H H T T · · ( H ( H· · H · · H T P k + R R k ) − 1 − 1 k = P P k ) � k k + - + - P k = ( I − K K k · H )· P k P = ( I − k · H )· P � � k k Robot Localization and Kalman Filters 13 26-9-2003

  14. Kalman Filters Filters Kalman + ( Bel + + P + k + + ^ ^ � Posterior belief: Posterior belief: Bel ( x x k ) = N( , ) x k k ) = N( , ) x P k � k Residual - - + k - k - k + ^ ^ ^ ^ ^ ^ x k x k x k = + K = + x K k k · · ( ( z z k k − H − H· ) · ) x x � � Kalman Posterior state Measurement Prior state True Gain estimate prediction estimate measurement - - - - T + � K K k = · P k · H H T T · · ( H ( H· · H · · H T P k + R R k ) − 1 − 1 k = P P k ) � k k + - + - P k = ( I − K K k · H )· P k P = ( I − k · H )· P � � k k Robot Localization and Kalman Filters 14 26-9-2003

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend