anderson localization and mott insulator phase in the
play

Anderson localization and Mott insulator phase in the time domain - PowerPoint PPT Presentation

Anderson localization and Mott insulator phase in the time domain Krzysztof Sacha Marian Smoluchowski Institute of Physics, Jagiellonian University in Krak ow . . . . . . . . . . . . . . . . . . . . . . . . . . . .


  1. Anderson localization and Mott insulator phase in the time domain Krzysztof Sacha Marian Smoluchowski Institute of Physics, Jagiellonian University in Krak´ ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  2. Outline: • Formation of time crystals • Modeling time crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  3. Formation of time crystals Eigenstates of a time-independent Hamiltonian H are also eigenstates of a time translation operator e − iHt � 2 = � 2 = | ψ | 2 � e − iHt ψ � e − iEt ψ � � � � ⃗ r is fixed F. Wilczek, PRL 109 , 160401 (2012). P. Bruno, PRL 110 , 118901 (2013). T. Li et al. , PRL 109 , 163001 (2012). F. Wilczek, PRL 110 , 118902 (2013). J. Zakrzewski, Physics 5 , 116 (2012). P. Bruno, PRL 111 , 029301 (2013). P. Coleman, Nature 493 , 166 (2013). T. Li et al. , arXiv:1212.6959. KS, PRA 91 , 033617 (2015). P. Bruno, PRL 111 , 070402 (2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  4. Modeling time crystals Single particle systems Space periodic potential: H ( x + L ) = H ( x ) Periodic driving: H ( t + T ) = H ( t ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  5. Modeling time crystals Single particle systems Space periodic potential: H ( x + L ) = H ( x ) Periodic driving: H ( t + T ) = H ( t ) Example: single particle bouncing on an oscillating mirror in 1D: A. Buchleitner, D. Delande, J. Zakrzewski, Phys. Rep. 368 , 409 (2002). Floquet Hamiltonian ∂ 2 1 ∂ H F ( t ) = − ∂ z 2 + z + λ z cos(2 π t / T ) − i 2 ∂ t ⇐ ⇒ H F ψ n ( z , t ) = E n ψ n ( z , t ) E n – quasi-energy ψ n ( z , t ) – time periodic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  6. Modeling time crystals Single particle systems Space periodic potential: H ( x + L ) = H ( x ) Periodic driving: H ( t + T ) = H ( t ) Example: single particle bouncing on an oscillating mirror in 1D: A. Buchleitner, D. Delande, J. Zakrzewski, Phys. Rep. 368 , 409 (2002). Floquet Hamiltonian ∂ 2 1 ∂ H F ( t ) = − ∂ z 2 + z + λ z cos(2 π t / T ) − i 2 ∂ t ⇐ ⇒ H F ψ n ( z , t ) = E n ψ n ( z , t ) E n – quasi-energy t=0 0,3 0.5T ψ n ( z , t ) – time periodic function 0 0,3 0.6T probability density 0.1T 0 0,3 0.2T 0.7T 2 : 1 resonance 0 0,3 0.3T 0.8T λ = 0 . 06, T = 5 . 7 0 0,3 0.4T T 0 0 10 20 0 10 20 z z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  7. Modeling time crystals Single particle systems In the s : 1 resonance case: • There are s Floquet eigenstates with quasi-energies E j ≈ E j ′ . These quasi-energies form a band when s → ∞ . • s individual wavepackets, φ j ( z , t ), can be prepared by superposing s Floquet eigenstates. For s → ∞ , the wavepackets φ j ( z , t ) become analogues of Wannier states but in the time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  8. Modeling time crystals Single particle systems In the s : 1 resonance case: • There are s Floquet eigenstates with quasi-energies E j ≈ E j ′ . These quasi-energies form a band when s → ∞ . • s individual wavepackets, φ j ( z , t ), can be prepared by superposing s Floquet eigenstates. For s → ∞ , the wavepackets φ j ( z , t ) become analogues of Wannier states but in the time domain. Example for s = 4: s Restricting to the Hilbert subspace ψ = ∑ a j φ j , probability density 0,1 j =1 1 t=0.25T t=0.3T 0,05 sT s 4 ∫ J 2 ∑ ( a ∗ 3 E F = dt ⟨ ψ | H F | ψ ⟩ ≈ − j +1 a j + c . c . ) 2 0 j =1 0 30 60 90 120 0 z sT z=121 ∫ J = − 2 dt ⟨ φ j +1 | H F | φ j ⟩ probability density 0,6 0 1 2 3 4 0,4 The lowest and higher quasi-energy bands can be 0,2 considered. 0 0 1 2 3 4 t / T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  9. Anderson localization in the time domain s s E F = − J ∑ ∑ ( a ∗ ε j | a j | 2 j +1 a j + c . c . ) + 2 j =1 j =1 sT dt ⟨ φ j | H ′ ( t ) | φ j ⟩ , with ε j = ∫ 0 where H ′ ( t ) is a perturbation that fluctuates in time but H ′ ( t + sT ) = H ′ ( t ). Example for s = 4: probability density 0 10 z=121 -2 10 -4 10 -6 10 0 1 2 3 4 t / T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  10. Anderson localization in the time domain s s E F = − J ∑ ∑ ( a ∗ ε j | a j | 2 j +1 a j + c . c . ) + 2 j =1 j =1 sT dt ⟨ φ j | H ′ ( t ) | φ j ⟩ , with ε j = ∫ 0 where H ′ ( t ) is a perturbation that fluctuates in time but H ′ ( t + sT ) = H ′ ( t ). Space Crystal Time Crystal Example for s = 4: t=const z=const probability density 0 10 z=121 2 2 -2 |ψ (t) | 10 |ψ (z) | -4 10 -6 2L 2T 10 (s-1)L (s-1)T L T 0 0 space 0 1 2 3 4 time t / T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  11. Mott insulator-like phase in the time domain Many-body systems Bosons: s s H F = − J a j + h . c . ) + 1 ˆ ∑ a † ∑ (ˆ j +1 ˆ U ij ˆ n i ˆ n j 2 2 j =1 i , j =1 sT ∞ dz | φ i | 2 | φ j | 2 , where | U ii | > | U ij | for i ̸ = j . ∫ ∫ with U ij = g 0 dt 0 0 • For g 0 → 0, the ground state is a superfluid state with long-time phase coherence. • For strong repulsion, U ii ≫ NJ / s , the ground state becomes a Fock state | N / s , N / s , . . . , N / s ⟩ and long-time phase coherence is lost. Time Crystal z=const (s-1)T 2T 0 time T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  12. Summary: • Time crystals are analogues of space crystals but in the time domain. • Space periodic potentials are often used to model properties of space crystals. Crystalline structures in the time domain can be modeled by periodically driven systems. • We show that Anderson localization and Mott insulator-like phase can be observed in the time domain. • Possible experimental realization: • electronic motion of Rydberg atoms in microwave fields, • ultra-cold atoms bouncing on an oscillating mirror. KS, Phys. Rev. A 91 , 033617 (2015). KS, Sci. Rep. 5 , 10787 (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  13. Anderson localization in the time domain s s J ε j | a j | 2 ∑ ( a ∗ ∑ E F = − j +1 a j + c . c . ) + 2 j =1 j =1 where H ′ ( t ) is a perturbation that fluctuates in time but H ′ ( t + sT ) = H ′ ( t ). 4 { [ t ( t )]} H ′ ( t ) = z ∑ α n cos 2 π − sin 2 π . n 4 T 4 T n =1 ε j are chosen randomly, e.g. according to a Lorentzian distribution (Lloyd model), sT ∫ dt ⟨ φ j | H ′ ( t ) | φ j ⟩ . then α n are chosen so that ε j = 0 Space Crystal Time Crystal Example for s = 4: t=const z=const probability density 0 10 z=121 2 2 -2 |ψ (t) | |ψ (z) | 10 -4 10 -6 2L 2T 10 (s-1)L (s-1)T L T 0 0 space 0 1 2 3 4 time t / T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  14. Maximal number of states localized in a s -resonant island: √ n max ≈ s 8 λ ω 3 . Resonant action I s = s 3 π 2 3 ω 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  15. Formation of space crystals [ ˆ H , ˆ T ] = 0 ˆ H – solid state system Hamiltonian ˆ T – translation operator of all particles by the same vector 2 � 2 = | ψ | 2 � � � ˆ � e i α ψ � � = T ψ � � � t =const. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  16. Formation of space crystals [ ˆ H , ˆ T ] = 0 ˆ H – solid state system Hamiltonian ˆ T – translation operator of all particles by the same vector 2 � 2 = | ψ | 2 � � � ˆ � e i α ψ � � = T ψ � � � t =const. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend