monte carlo methods and simulating quarks
play

Monte Carlo Methods and Simulating Quarks Michael Creutz Brookhaven - PowerPoint PPT Presentation

Monte Carlo Methods and Simulating Quarks Michael Creutz Brookhaven Lab 1946: Stanislaus Ulam use random trials to estimate probabilities 1947: with von Neumann and others Monte Carlo methods for neutron diffusion 1953: Metropolis,


  1. Monte Carlo Methods and Simulating Quarks Michael Creutz Brookhaven Lab 1946: Stanislaus Ulam • use random trials to estimate probabilities 1947: with von Neumann and others • Monte Carlo methods for neutron diffusion 1953: Metropolis, Rosenbluth, Teller, Teller • ‘‘Equation of State Calculations by Fast Computing Machines’’ 1980’s: extensive application to quantum field theories Now the primary source of non-perturbative information for QCD Michael Creutz BNL 1

  2. Monte Carlo for statistical mechanics Partition function Z = � i e − βE i • a very big sum • Ising on a 10 by 10 lattice gives 2 100 = 1 . 3 × 10 30 terms • age of universe ∼ 10 27 nanoseconds But we rarely need them all Generate a few ‘‘typical configurations’’ • random with Boltzman weight e − βE ( C ) Michael Creutz BNL 2

  3. Algorithms Detailed balance (sufficient, but not necessary) • P ( C → C ′ ) e − βE ( C ) = P ( C ′ → C ) e − βE ( C ′ ) • guarantees approach to equilibrium • if ergodic, eventually will get there Metropolis algorithm • try some random change C → C ′ • accept change with probability min(1 , e βE ( C ) − βE ( C ′ ) ) • gives detailed balance • adjust size of changes for reasonable acceptance Michael Creutz BNL 3

  4. Quantum field theory Fields φ , interactions from an action S ( φ ) • path integral ( dφ ) e iS ( φ ) � • go to Euclidian space • evolution with e − Ht instead of e iHt • settle to ground state Path integral mathematically a statistical mechanics partition function ( dφ ) e − S ( φ ) � • Z = • coupling g 2 ↔ temperature T • use the same Monte Carlo method as for stat. mech. Euclidian space-time • 3 D quantum field theory equivalent to 4 d stat mech Michael Creutz BNL 4

  5. Control divergences with a lattice Quark paths or ‘‘world lines’’ − → discrete hops • four dimensions of space and time a t x A mathematical trick • lattice spacing a → 0 for physics • a = minimum length (cutoff) = π/ Λ • allows Monte Carlo computations Michael Creutz BNL 5

  6. What drove us to lattice Monte Carlo? Late 1960’s • quantum electrodynamics: immensely successful, but ‘‘done’’ • eightfold way: ‘‘quarks’’ explain particle families • electroweak theory emerging • electron-proton scattering: ‘‘partons’’ Meson-nucleon theory failing g 2 vs. e 2 1 • 4 π ∼ 15 4 π ∼ 137 • no small parameter for expansion Michael Creutz BNL 6

  7. Frustration with quantum field theory ‘‘S-matrix theory’’ • particles are bound states of themselves • p + π ↔ ∆ • ∆ + π ↔ p • held together by exchanging themselves • roots of duality between particles and forces − → string theory What is elementary? Michael Creutz BNL 7

  8. Early 1970’s • ‘‘partons’’ ← → ‘‘quarks’’ • renormalizability of non-Abelian gauge theories • 1999 Nobel Prize, G. ’t Hooft and M. Veltman • asymptotic freedom • 2004 Nobel prize: D. Gross, D. Politzer, F. Wilczek • Quark Confining Dynamics (QCD) evolving Confinement? • interacting hadrons vs. quarks and gluons • What is elementary? Michael Creutz BNL 8

  9. Mid 1970’s: a particle theory revolution • J/ψ discovered, quarks inescapable • field theory reborn • ‘‘standard model’’ evolves Extended objects in field theory • ‘‘classical lumps’’ a new way to get particles • ‘‘bosonization’’ very different formulations can be equivalent • growing connections with statistical mechanics • What is elementary? Field Theory >> Feynman Diagrams Michael Creutz BNL 9

  10. Field theory has infinities • bare charge, mass divergent • must ‘‘regulate’’ for calculation • Pauli Villars, dimensional regularization: perturbative • based on Feynman diagrams • an expansion in a small parameter, the electric charge But the expansion misses important ‘‘non-perturbative’’ effects • confinement • light pions from chiral symmetry breaking need a ‘‘non-perturbative’’ regulator Michael Creutz BNL 10

  11. Wilson’s strong coupling lattice theory (1973) Strong coupling limit does confine quarks • only quark bound states (hadrons) can move space-time lattice = non-perturbative cutoff Lattice gauge theory • A mathematical trick • Minimum wavelength = lattice spacing a • Uncertainty principle: a maximum momentum = π/a • Allows computations • Defines a field theory Michael Creutz BNL 11

  12. Wilson’s strong coupling lattice theory (1973) Strong coupling limit does confine quarks • only quark bound states (hadrons) can move space-time lattice = non-perturbative cutoff Lattice gauge theory • A mathematical trick • Minimum wavelength = lattice spacing a • Uncertainty principle: a maximum momentum = π/a • Allows computations • Defines a field theory Be discrete, do it on the lattice Michael Creutz BNL 11

  13. Wilson’s strong coupling lattice theory (1973) Strong coupling limit does confine quarks • only quark bound states (hadrons) can move space-time lattice = non-perturbative cutoff Lattice gauge theory • A mathematical trick • Minimum wavelength = lattice spacing a • Uncertainty principle: a maximum momentum = π/a • Allows computations • Defines a field theory Be discrete, do it on the lattice Be indiscreet, do it continuously Michael Creutz BNL 11

  14. Wilson’s formulation local symmetry + theory of phases Variables: � x j • Gauge fields are generalized ‘‘phases’’ U i,j ∼ exp( i x i A µ dx µ ) j i U ij = 3 by 3 unitary ( U † U = 1 ) matrices, i.e. SU(3) • On links connecting nearest neighbors • 3 quarks in a proton Michael Creutz BNL 12

  15. Dynamics: • Sum over elementary squares, ‘‘plaquettes’’ 2 3 1 4 U p = U 1 , 2 U 2 , 3 U 3 , 4 U 4 , 1 • like a ‘‘curl’’ ∇ × � � A = � B • flux through corresponding plaquette. � � � 1 − 1 d 4 x ( E 2 + B 2 ) − � S = → 3ReTr U p p Michael Creutz BNL 13

  16. Quantum mechanics: • via Feynman’s path integrals • sum over paths − → sum over phases � ( dU ) e − βS • Z = • invariant group measure Parameter β related to the ‘‘bare’’ charge 6 • β = g 2 0 • divergences say we must ‘‘renormalize’’ β as a → 0 • adjust β to hold some physical quantity constant Michael Creutz BNL 14

  17. Parameters Asymptotic freedom 1 g 2 0 ∼ log(1 /a Λ) → 0 Λ sets the overall scale via ‘‘dimensional transmutation’’ • Sidney Coleman and Erick Weinberg • Λ depends on units: not a real parameter Only the quark masses! m q = 0 : parameter free theory • m π = 0 • m ρ /m p determined • close to reality Michael Creutz BNL 15

  18. Example: strong coupling determined Average Hadronic Jets e + e - rates Photo-production Fragmentation Z width ep event shapes Polarized DIS Deep Inelastic Scattering (DIS) τ decays Spectroscopy (Lattice) Υ decay 0.1 0.12 0.14 α s (M Z ) (PDG, 2008) (charmonium spectrum for input, fermion dynamics treated approximately) Michael Creutz BNL 16

  19. Monte Carlo Random field changes biased by Boltzmann weight. • converge towards ‘‘thermal equilibrium.’’ • P ( C ) ∼ e − βS In principle can measure anything Fluctuations → theorists have error bars! Also have systematic errors • finite volume • finite lattice spacing • quark mass extrapolations Michael Creutz BNL 17

  20. Interquark force • constant at large distance • confinement C. Michael, hep-lat/9509090 Michael Creutz BNL 18

  21. Extracting particle masses • let φ ( t ) be some operator that can create a particle at time t • As t → ∞ → e − mt • � φ ( t ) φ (0) � − • m = mass of lightest hadron created by φ • Bare quark mass is a parameter Chiral symmetry: m 2 π ∼ m q Adjust m q to get m π /m ρ ( m s for the kaon) all other mass ratios determined Michael Creutz BNL 19

  22. Budapest-Marseille-Wuppertal collaboration • Science 322:1224-1227,2008 • improved Wilson fermions Michael Creutz BNL 20

  23. 12 +− 0 10 −− +− 3 2 4 −− *−+ 2 2 −− 1 ++ Glueballs 3 *−+ 0 +− 3 8 • closed loops of gluon flux −+ 2 3 +− 1 • no quarks m G (GeV) *++ 0 −+ r 0 m G 6 0 ++ 2 2 4 ++ 0 1 2 0 0 ++ −+ +− −− PC Morningstar and Peardon, Phys. Rev. D 60 , 034509 (1999) • used an anisotropic lattice, ignored virtual quark-antiquark pairs Michael Creutz BNL 21

  24. Quark Gluon Plasma π p π p Finite temporal box of length t • Z ∼ Tr e − Ht • 1 /t ↔ temperature • confinement lost at high temperature • chiral symmetry restored • T c ∼ 170 − 190 MeV • not a true transition, but a rapid ‘‘crossover’’ Michael Creutz BNL 22

  25. Big jump in entropy versus temperature 0.4 0.6 0.8 1 1.2 1.4 1.6 s SB /T 3 Tr 0 s/T 3 20 15 10 p4: N τ =4 6 asqtad: N τ =6 5 T [MeV] 0 100 200 300 400 500 600 700 M. Cheng et al., Phys.Rev.D77:014511,2008 • use a non-rigorous approximation to QCD Michael Creutz BNL 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend