an overview of classical orthogonal polynomials
play

An overview of Classical Orthogonal Polynomials Roberto S. - PowerPoint PPT Presentation

An overview of Classical Orthogonal Polynomials Roberto S. Costas-Santos University of Alcal a Work supported by MCeI grant MTM2009-12740-C03-01 www.rscosan.com Gaithersburg, March 25, 2014 NIST, 2014 R. S. Costas-Santos : An overview of


  1. An overview of Classical Orthogonal Polynomials Roberto S. Costas-Santos University of Alcal´ a Work supported by MCeI grant MTM2009-12740-C03-01 www.rscosan.com Gaithersburg, March 25, 2014 NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  2. Outline 1 The basics Classical Orthogonal Polynomials The Favard’s theorem My First result: the Degenerate Favard’s Theorem 2 The Schemes The Classical Hypergeometric Orthogonal Polynomials The Classical basic Hypergeometric Orth. Polyn. 3 Some Results Characterization Theorem Hypergeometric and basic hypergeometric representations The Connection Problem One example. Big q -Jacobi polynomials NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  3. THE BASICS NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  4. Classical Orthogonal Polynomials Let ( P n ) be a polynomial sequence and u be a functional. Property of orthogonality � u , P n P m � = d 2 n δ n , m . Distributional equation: D ( φ u ) = ψ u , deg ψ ≥ 1 , deg φ ≤ 2 . Three-term recurrence relation: xP n ( x ) = α n P n +1 ( x ) + β n P n ( x ) + γ n P n +1 ( x ) . The weight function d µ ( z ) = ω ( z ) dz � � u , P � = P ( z ) d µ ( z ) , Γ ⊂ C , . Γ NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  5. 1 Continuous classical orthogonal polynomials d dx ( φ ( x ) ω ( x )) = ψ ( x ) ω ( x ), 2 ∆-classical orthogonal polynomials ∇ ( φ ( x ) ω ( x )) = ψ ( x ) ω ( x ), ∆ f ( x ) = f ( x + 1) − f ( x ), ∇ f ( x ) = f ( x ) − f ( x − 1), 3 q -Hahn classical orthogonal polynomials D 1 / q ( φ ( x ) ω ( x )) = ψ ( x ) ω ( x ), D q f ( x ) = f ( qx ) − f ( x ) x ( q − 1) , x � = 0, D q f (0) = f ′ (0), x ( s ) = c 1 q s + c 2 . NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  6. Some families Continuous Classical OP: Jacobi, Hermite, Laguerre and Bessel. ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier, etc. q -Classical OP: Askey Wilson, q -Racah, q -Hahn, Continuous q -Hahn, Big q -Jacobi, q -Hermite, q -Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc. NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  7. Some families Continuous Classical OP: Jacobi, Hermite, Laguerre and Bessel. ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier, etc. q -Classical OP: Askey Wilson, q -Racah, q -Hahn, Continuous q -Hahn, Big q -Jacobi, q -Hermite, q -Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc. NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  8. Some families Continuous Classical OP: Jacobi, Hermite, Laguerre and Bessel. ∆-Classical OP: Hahn, Racah, Meixner, Krawtchouk, Charlier, etc. q -Classical OP: Askey Wilson, q -Racah, q -Hahn, Continuous q -Hahn, Big q -Jacobi, q -Hermite, q -Laguerre, Al-Salam-Chihara, Stieltjes-Wigert, etc. NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  9. The Favard’s theorem Let ( p n ) n ∈ N 0 generated by the TTRR xp n ( x ) = p n +1 ( x ) + β n p n ( x ) + γ n p n − 1 ( x ) . Favard’s theorem If γ n � = 0 ∀ n ∈ N then there exists a moments functional L 0 : P [ x ] → C so that L 0 ( p n p m ) = r n δ n , m with r n a non-vanishing normalization factor. NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  10. Degenerate version of Favard’s theorem Theorem If there exists N so that γ N = 0, then ( p n ) is a MOPS with respect to � L 1 ( T ( N ) ( f ) T ( N ) ( g )) . � f , g � = L 0 ( fg ) + j ∈ A NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  11. THE RELEVANT FAMILIES NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  12. The Classical Hypergeometric Orthogonal Polynomials Wilson Racah F Cont. Dual Hahn Cont. Hahn Hahn Dual Hahn F F Krawchuk Meixner-Pollaczek Jacobi Meixner F laguerre Charlier Hermite NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  13. The Classical basic Hypergeometric Orth. Polyn. The scheme is too big to put it on here, let’s go outside to see it ;) NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  14. SOME RESULTS NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  15. Characterization Theorems. The continuous version Let ( P n ) be an OPS with respect to ω . The following statements are equivalent: 1 P n is classical, i.e. ( φ ( x ) ω ( x )) ′ = ψ ( x ) ω ( x ). 2 ( P ′ n +1 ) is a OPS. 3 ( P ( k ) n + k ) is a OPS for any integer k . 4 (First structure relation) α n P n +1 ( x ) + � φ ( x ) P ′ n ( x ) = � β n P n ( x ) + � γ n P n − 1 ( x ) . 5 (Second structure relation) n +1 ( x ) + � α n P ′ β n P ′ γ n P ′ P n ( x ) = � n ( x ) + � n − 1 ( x ) . 6 (Eigenfunctions of SODE) φ ( x ) P ′′ ( x ) + ψ ( x ) P ′ ( x ) + λ P ( x ) = 0 . NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  16. Characterization Theorem (cont.) Let ( P n ) be an OPS with respect to ω . The following statements are equivalent: 1 P n is classical, i.e. ( φ ( x ) ω ( x )) ′ = ψ ( x ) ω ( x ). 2 The Rodrigues Formula for P n d n � B n φ n ( x ) ω ( x )) , P n ( x ) = B n � = 0 . dx n ω ( x ) 3 φ ( x )( P n P n − 1 ) ′ ( x ) = g n P 2 n ( x ) − ( ψ ( x ) − φ ′ ( x )) P n ( x ) P n − 1 ( x ) + h n P 2 n − 1 ( x ) NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  17. Hypergeometric and basic hypergeometric representations The continuous and discrete COP can be written in terms of � a 1 , a 2 , . . . , a r � � � � z k ( a 1 ) k ( a 2 ) k . . . ( a r ) k � r F s � z = k ! . b 1 , b 2 , . . . , b s ( b 1 ) k ( b 2 ) k . . . ( b s ) k k ≥ 0 The q -discrete COP can be written in terms of � � a 1 , . . . , a r � � 2 ) � 1+ s − r � � z k ( a 1 ; q ) k . . . ( a r ; q ) k ( − 1) k q ( k � r ϕ s � z = . b 1 , . . . , b s ( b 1 ; q ) k . . . ( b s ; q ) k ( q ; q ) k k ≥ 0 ( a ) k = a ( a + 1) · · · ( a + k − 1) ( a ; q ) k = (1 − a )(1 − aq ) · · · (1 − aq k − 1 ) NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  18. The Connection Problem The connection problem is the problem of finding the coefficients c k ; n in the expansion of P n in terms of another sequence of polynomials R k , i.e. n � P n ( x ) = c k ; n R k ( x ) . k =0 We are interested into obtaining such coefficients for Classical orthogonal polynomials in a enough ‘general’ context. NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  19. The example. Big q -Jacobi polynomials Again let’s go to File 2 :D NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  20. Some References (with J.F. S´ anchez-Lara) Extensions of discrete classical orthogonal polynomials beyond the orthogonality. J. Comput. Appl. Math. 225 (2009), no. 2, 440–451 (with F. Marcell´ an) q -Classical orthogonal polynomial: A general difference calculus approach. Acta Appl. Math. 111 (2010), no. 1, 107–128 (with J.F. S´ anchez-Lara) Orthogonality of q -polynomials for non-standard parameters. J. Approx. Theory 163 (2011), no. 9, 1246–1268 (with F. Marcell´ an) The complementary polynomials and the Rodrigues operator of classical orthogonal polynomials. Proc. Amer. Math. Soc. 140 (2012), no. 10, 3485–3493 NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

  21. FINALLY.... THANK YOU FOR YOUR ATTENTION !! NIST, 2014 R. S. Costas-Santos : An overview of Classical Orthogonal Polynomials

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend