an invitation to tropical geometry
play

An Invitation to Tropical Geometry Eva Maria Feichtner - PowerPoint PPT Presentation

An Invitation to Tropical Geometry Eva Maria Feichtner feichtne@igt.uni-stuttgart.de http://www.igt.uni-stuttgart.de/AbGeoTop/Feichtner/ DIAMANT/EIDMA Symposium 2007 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA


  1. An Invitation to Tropical Geometry Eva Maria Feichtner feichtne@igt.uni-stuttgart.de http://www.igt.uni-stuttgart.de/AbGeoTop/Feichtner/ DIAMANT/EIDMA Symposium 2007 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.1/30

  2. Outline A -Discriminants ∆ A 1. 2. Tropical Geometry 3. Tropical A -Discriminants 4. The Newton Polytope of ∆ A This is joint work with Alicia Dickenstein and Bernd Sturmfels arXiv:math.AG/0510126 , J. Amer. Math. Soc., to appear. Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.2/30

  3. 1. Discriminants: Classical Examples 1. Discriminant of a quadratic polynomial in 1 variable f ( t ) = x 2 t 2 + x 1 t + x 0 , x 2 � = 0 ∆ f = x 2 ⇐ ⇒ 1 − 4 x 2 x 0 = 0 f has a double root 2. Discriminant of a cubic polynomial in 1 variable f ( t ) = x 3 t 3 + x 2 t 2 + x 1 t + x 0 , x 3 � = 0 ⇐ ⇒ f has a double root ∆ f = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 +4 x 1 x 3 3 +4 x 3 2 x 4 − x 2 2 x 2 3 = 0 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.3/30

  4. A -Discriminants [Gelfand, Kapranov, Zelevinsky 1992] � � ∈ Z d × n , (1 , . . . , 1) ∈ row span A , a 1 , . . . , a n span Z d a 1 · · · a n A = A represents a family of hypersurfaces in ( C ∗ ) d defined by n n x j t a j = x j t a 1 j 1 t a 2 j . . . t a dj � � f A ( t ) = . 2 d j =1 j =1 A = cl { ( x 1 : . . . : x n ) ∈ CP n − 1 | f A ( t ) = 0 has a singular point in ( C ∗ ) d } X ∗ Generically, codim X ∗ A = 1 , and X ∗ A = V (∆ A ) , where ∆ A irreducible polynomial in Z [ x 1 , . . . , x n ] , the A -discriminant. Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.4/30

  5. A -Discriminants: Classical Examples 1. Discriminant of a quadratic polynomial in 1 variable � � f ( t ) = x 2 t 2 + x 1 t + x 0 , 1 1 1 x 2 � = 0 A = 0 1 2 ∆ A = x 2 f has a double root ⇐ ⇒ 1 − 4 x 2 x 0 = 0 2. Discriminant of a cubic polynomial in 1 variable � � f ( t ) = x 3 t 3 + x 2 t 2 + x 1 t + x 0 , x 3 � = 0 1 1 1 1 A = 0 1 2 3 f has a double root ⇐ ⇒ ∆ A = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 3 +4 x 1 x 3 3 +4 x 3 2 x 4 − x 2 2 x 2 3 = 0 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.5/30

  6. A -Discriminants: Classical Examples 3. Resultant of two polynomials in 1 variable n m � � x i t i , y i t i , f ( t ) = x n � = 0 , g ( t ) = y m � = 0 , i =0 i =0 ⇐ ⇒ f and g have a common root Res( f, g ) = 0 Res( f, g ) = ∆ A ∈ Z [ x 0 , . . . , x n , y 0 , . . . , y m ] for   1 1 . . . 1 0 0 . . . 0 A = 0 0 . . . 0 1 1 . . . 1     0 1 . . . n 0 1 . . . m Res( f, g ) = determinant of the Sylvester matrix Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.6/30

  7. A -Discriminants: More Examples 4. Discriminant of a deg 2 homogeneous polynomial in 3 variables   1 1 1 1 1 1 A = 0 1 2 0 1 0     0 0 0 1 1 2   2 x 1 x 2 x 4 ∆ A = 1 / 2 det x 2 2 x 3 x 5     x 4 x 5 2 x 6 5. Discriminant of a deg 3 homogeneous polynomial in 3 variables   1 1 1 1 1 1 1 1 1 1 A = 0 0 0 0 1 1 1 2 2 3     0 1 2 3 0 1 2 0 1 0 deg ∆ A = 12 , 2040 terms Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.7/30

  8. Newton Polytopes γ c x c = � � γ c x c 1 1 · · · x c n γ c ∈ C ∗ , C ⊂ Z n g = n , c ∈ C c ∈ C New( g ) = conv { c | c ∈ C } ⊆ R n Newton polytope Example: g = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 2002 3 1111 0301 Once we know New(∆ A ) , determining ∆ A is merely a linear algebra problem! 0220 1030 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.8/30

  9. A -Discriminants: Our Goals Goal: Derive information on ∆ A , resp. X ∗ A , for instance deg ∆ A Newton polytope of ∆ A directly from the matrix, i.e., the point configuration A . Ansatz: Study the tropicalization of X ∗ A ! Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.9/30

  10. 2. Tropical Geometry Tropical geometry is algebraic geometry over the tropical semiring ( R ∪ {∞} , ⊕ , ⊗ ) , x ⊕ y := min { x, y } , x ⊗ y := x + y . tropical varieties, τ algebraic varieties − → i.e. polyhedral fans Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.10/30

  11. Tropical Varieties – the Algebraic Approach Y ⊆ CP n − 1 irreducible variety, dim Y = r , I Y ⊆ C [ x 1 , . . . , x n ] defining prime ideal. For w ∈ R n and f = � c ∈ C γ c x c , γ c ∈ C , C ⊂ Z n , define � γ c x c in w f = initial term of f , w · c min in w ( I Y ) = � in w f | f ∈ I Y � initial ideal of I Y . τ ( Y ) = { w ∈ R n | in w ( I Y ) does not contain a monomial } tropicalization of Y τ ( Y ) is a pure r -dimensional polyhedral fan in R n , resp. TP n − 1 . Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.11/30

  12. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  13. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  14. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 3 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  15. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 ( − 1 , − 1 , − 1 , 0) ∈ τ ( X ∗ A ) 3 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  16. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 ( − 1 , − 1 , − 1 , 0) ∈ τ ( X ∗ A ) 3 in (1 , 0 , 1 , 0) (∆) = Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  17. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 ( − 1 , − 1 , − 1 , 0) ∈ τ ( X ∗ A ) 3 in (1 , 0 , 1 , 0) (∆) = 4 x 3 2 x 4 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  18. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 ( − 1 , − 1 , − 1 , 0) ∈ τ ( X ∗ A ) 3 in (1 , 0 , 1 , 0) (∆) = 4 x 3 (1 , 0 , 1 , 0) �∈ τ ( X ∗ 2 x 4 A ) Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  19. Examples of Tropicalized Varieties 1. The discriminant of a cubic polynomial in 1 variable ∆ = 27 x 2 1 x 2 4 − 18 x 1 x 2 x 3 x 4 + 4 x 1 x 3 3 + 4 x 3 2 x 4 − x 2 2 x 2 3 in ( − 1 , − 1 , − 1 , 0) (∆) = 4 x 1 x 3 3 − x 2 2 x 2 ( − 1 , − 1 , − 1 , 0) ∈ τ ( X ∗ A ) 3 in (1 , 0 , 1 , 0) (∆) = 4 x 3 (1 , 0 , 1 , 0) �∈ τ ( X ∗ 2 x 4 A ) 2002 0301 0220 1030 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.12/30

  20. Examples of Tropicalized Varieties 2. Y hypersurface in CP n − 1 f ∈ C [ x 1 , . . . , x n ] irreducible polynomial defining Y New( f ) Newton polytope, N New( f ) its normal fan τ ( Y ) = codim 1 -skeleton of N New( f ) Proof: { w ∈ R n | in w ( f ) is not a monomial } τ ( Y ) = { w ∈ R n | dim � � > 0 } = New(in w ( f )) { w ∈ R n | dim � � > 0 } = w -minimal face of New( f ) � = σ σ ∈N New( f ) codim σ> 0 Eva Maria Feichtner: An Invitation to Tropical Geometry ; DIAMANT/EIDMA Symposium, May 31/June 1, 2007. – p.13/30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend