an abstract two level schwarz method for systems with
play

An abstract two-level Schwarz method for systems with high contrast - PowerPoint PPT Presentation

An abstract two-level Schwarz method for systems with high contrast coefficients Clemens Pechstein Johannes Kepler University Linz (A) joint work with Nicole Spillane , Fr ed eric Nataf (Univ. Paris VI) Victorita Dolean (Univ. Nice


  1. An abstract two-level Schwarz method for systems with high contrast coefficients Clemens Pechstein Johannes Kepler University Linz (A) joint work with Nicole Spillane , Fr´ ed´ eric Nataf (Univ. Paris VI) Victorita Dolean (Univ. Nice Sophia-Antipolis) Patrice Hauret (Michelin, Clermont-Ferrand) Robert Scheichl (Univ. Bath) RICAM Special Semester Multiscale Simulation & Analysis in Energy & Environment October 8, 2011

  2. Motivation Large discretized system of PDEs Applications: flow in heterogeneous / strongly heterogeneous coefficients stochastic / layered media (high contrast, nonlinear, multiscale) structural mechanics electromagnetics E.g. Darcy pressure equation, etc. P 1 -finite elements: Au = f cond ( A ) ∼ κ max h − 2 κ min Goal: iterative solvers robust in size and heterogeneities C. Pechstein et al abstract two-level Schwarz 2 / 24

  3. Relation to other methods Graham, Lechner & Scheichl Scheichl & Vainikko Overlapping Schwarz MS coarse space Pechstein & Scheichl FETI (2 papers) boundary layers WPI for some patterns Galvis & Efendiev Overlapping Schwarz Dolean, Nataf, Spillane a) std. coarse space, WPI & Xiang / & Scheichl λ b) gen.EVP K = M κ κ Pechstein & Scheichl Overlapping Schwarz Weighted Poincare Ineq. Γ = λ M gen.EVP S κ κ Efendiev, Galvis, Lazarov & Willems Overlapping Schwarz, abstract SPD problems ξ λ THIS TALK gen.EVP K = K κ κ C. Pechstein et al abstract two-level Schwarz 3 / 24

  4. Problem setting – I Given f ∈ ( V h ) ∗ find u ∈ V h ∀ v ∈ V h a ( u , v ) = � f , v � ⇐ ⇒ A u = f Assumption throughout: A symmetric positive definite (SPD) Examples: � Darcy a ( u , v ) = Ω κ ∇ u · ∇ v dx � Elasticity a ( u , v ) = Ω C ε ( u ) : ε ( v ) dx � a ( u , v ) = Ω ν curl u · curl v + σ u · v dx Eddy current Heterogeneities / high contrast / nonlinearities in parameters C. Pechstein et al abstract two-level Schwarz 4 / 24

  5. Problem setting – II V h . . . FE space of functions in Ω based on mesh T h = { τ } 1 A given as set of element stiffness matrices 2 + connectivity (list of DOF per element) Assembling property: � a ( v , w ) = a τ ( v | τ , w | τ ) τ where a τ ( · , · ) symm. pos. semi-definite { φ k } n k = 1 (FE) basis of V h 3 on each element: unisolvence set of non-vanishing basis functions linearly independent fulfilled by standard FE continuous, N´ ed´ elec, Raviart-Thomas of low/high order Two more assumptions on a ( · , · ) later! 4 C. Pechstein et al abstract two-level Schwarz 5 / 24

  6. Problem setting – II V h . . . FE space of functions in Ω based on mesh T h = { τ } 1 A given as set of element stiffness matrices 2 + connectivity (list of DOF per element) Assembling property: � a ( v , w ) = a τ ( v | τ , w | τ ) τ where a τ ( · , · ) symm. pos. semi-definite { φ k } n k = 1 (FE) basis of V h 3 on each element: unisolvence set of non-vanishing basis functions linearly independent fulfilled by standard FE continuous, N´ ed´ elec, Raviart-Thomas of low/high order Two more assumptions on a ( · , · ) later! 4 C. Pechstein et al abstract two-level Schwarz 5 / 24

  7. Schwarz setting – I Overlapping partition: Ω = � N j = 1 Ω j ( Ω j union of elements) � � φ k : supp ( φ k ) ⊂ Ω j V j := span such that every φ k contained in one of those spaces, i.e. N � V h = V j j = 1 Example: adding “layers” to non-overlapping partition (partition and adding layers based on matrix information only!) C. Pechstein et al abstract two-level Schwarz 6 / 24

  8. Schwarz setting – II Local subspaces: V j ⊂ V h j = 1 , . . . , N Coarse space (defined later): V 0 ⊂ V h Additive Schwarz preconditioner: N � M − 1 R ⊤ j A − 1 AS , 2 = R j j j = 0 where A j = R ⊤ j AR j : V j → V h natural embedding and R ⊤ j ↔ R ⊤ j C. Pechstein et al abstract two-level Schwarz 7 / 24

  9. Partition of unity Definitions: � � k : supp ( φ k ) ∩ Ω j � = ∅ dof (Ω j ) := � � k : supp ( φ k ) ⊂ Ω j V j = span { φ k } k ∈ idof (Ω j ) idof (Ω j ) := � � imult ( k ) := # j : k ∈ idof (Ω j ) Partition of unity: (used for design of coarse space and for stable splitting) n 1 � � Ξ j v = imult ( k ) v k φ k for v = v k φ k k ∈ idof (Ω j ) k = 1 Properties: N � Ξ j v = v Ξ j v ∈ V j j = 1 C. Pechstein et al abstract two-level Schwarz 8 / 24

  10. Overlapping zone / Choice of coarse space Overlapping zone: Ω ◦ = { x ∈ Ω j : ∃ i � = j : x ∈ Ω i } j Observation: Ξ j | Ω j \ Ω ◦ = id j Coarse space should be local : N � V 0 = V 0 , j where V 0 , j ⊂ V j j = 1 m j E.g. V 0 , j = span { Ξ j p j , k } k = 1 C. Pechstein et al abstract two-level Schwarz 9 / 24

  11. Overlapping zone / Choice of coarse space Overlapping zone: Ω ◦ = { x ∈ Ω j : ∃ i � = j : x ∈ Ω i } j Observation: Ξ j | Ω j \ Ω ◦ = id j Coarse space should be local : N � V 0 = V 0 , j where V 0 , j ⊂ V j j = 1 m j E.g. V 0 , j = span { Ξ j p j , k } k = 1 C. Pechstein et al abstract two-level Schwarz 9 / 24

  12. Choice of coarse space (continued) ASM theory needs stable splitting : N � v = v 0 + v j j = 1 Suppose v 0 = � N j = 1 Ξ j Π j v | Ω j where Π j . . . local projector | 2 a , Ω j = | Ξ j ( v − Π j v ) | 2 j + | Ξ j ( v − Π j v )) | 2 | Ξ j ( v − Π j v ) a , Ω ◦ a , Ω j \ Ω ◦ j � �� � v j HOW? C | v | 2 ≤ a , Ω j ( a , D . . . restriction of a to D ) “Minimal” requirements: Π j be a -orthogonal Stability estimate: | Ξ j ( v − Π j v ) | 2 ≤ c | v | 2 a , Ω ◦ a , Ω j j C. Pechstein et al abstract two-level Schwarz 10 / 24

  13. Choice of coarse space (continued) ASM theory needs stable splitting : N � v = v 0 + v j j = 1 Suppose v 0 = � N j = 1 Ξ j Π j v | Ω j where Π j . . . local projector | 2 a , Ω j = | Ξ j ( v − Π j v ) | 2 j + | Ξ j ( v − Π j v )) | 2 | Ξ j ( v − Π j v ) a , Ω ◦ a , Ω j \ Ω ◦ j � �� � v j HOW? C | v | 2 ≤ a , Ω j ( a , D . . . restriction of a to D ) “Minimal” requirements: Π j be a -orthogonal Stability estimate: | Ξ j ( v − Π j v ) | 2 ≤ c | v | 2 a , Ω ◦ a , Ω j j C. Pechstein et al abstract two-level Schwarz 10 / 24

  14. Abstract eigenvalue problem Gen.EVP per subdomain: Find p j , k ∈ V h | Ω j and λ j , k ≥ 0: ∀ v ∈ V h | Ω j a Ω j ( p j , k , v ) = λ j , k a Ω ◦ j (Ξ j p j , k , Ξ j v ) A j p j , k = λ j , k X j A ◦ j X j p j , k ( X j . . . diagonal) a D . . . restriction of a to D (properties of eigenfunctions discussed soon) In the two-level ASM: Choose first m j eigenvectors per subdomain: � � j = 1 ,..., N V 0 = span Ξ j p j , k k = 1 ,..., m j C. Pechstein et al abstract two-level Schwarz 11 / 24

  15. Abstract eigenvalue problem Gen.EVP per subdomain: Find p j , k ∈ V h | Ω j and λ j , k ≥ 0: ∀ v ∈ V h | Ω j a Ω j ( p j , k , v ) = λ j , k a Ω ◦ j (Ξ j p j , k , Ξ j v ) A j p j , k = λ j , k X j A ◦ j X j p j , k ( X j . . . diagonal) a D . . . restriction of a to D (properties of eigenfunctions discussed soon) In the two-level ASM: Choose first m j eigenvectors per subdomain: � � j = 1 ,..., N V 0 = span Ξ j p j , k k = 1 ,..., m j C. Pechstein et al abstract two-level Schwarz 11 / 24

  16. Comparison with existing works Galvis & Efendiev (SIAM 2010): � � κ ∇ p j , k · ∇ v dx = λ j , k κ p j , k v dx ∀ v ∈ V h | Ω j Ω j Ω j Efendiev, Galvis, Lazarov & Willems (submitted): � ∀ v ∈ V | Ω j a Ω j ( p j , k , v ) = λ j , k a Ω j ( ξ j ξ i p j , k , ξ j ξ i v ) i ∈ neighb ( j ) ξ j . . . partition of unity, calculated adaptively (MS) Our gen.EVP: a Ω j ( p j , k , v ) = λ j , k a Ω ◦ j (Ξ j p j , k , Ξ j v ) ∀ v ∈ V h | Ω j ⇒ λ j , k ∈ [ 0 , ∞ ] both matrices typically singular = C. Pechstein et al abstract two-level Schwarz 12 / 24

  17. Convergence theory Definition: Each element appears in at most k 0 of the subdomains Ω j Assumption 1: a Ω j ( · , · ) SPD on span { φ k | Ω j } k ∈ dof (Ω j ) \ idof (Ω j ) Assumption 2: a Ω ◦ j ( · , · ) SPD on span { φ k | Ω j } k ∈ idof (Ω j ) \ idof (Ω j \ Ω ◦ j ) Theorem 0 < λ j , m j + 1 < ∞ : If for all j: � � 1 �� N κ ( M − 1 AS , 2 A ) ≤ ( 1 + k 0 ) 2 + k 0 ( 2 k 0 + 1 ) 1 + max λ j , m j + 1 j = 1 C. Pechstein et al abstract two-level Schwarz 13 / 24

  18. Properties of eigenfunctions Gen.EVP per subdomain: Find p j , k ∈ V h | Ω j and λ j , k ∈ [ 0 , ∞ ] : a Ω j ( p j , k , v ) = λ j , k a Ω ◦ j (Ξ j p j , k , Ξ j v ) ∀ v ∈ V h | Ω j � �� � =: b j ( p j , k , v ) Eigenfunctions with λ < ∞ are Free DOFs: here for continuous a Ω j ( · , · ) -harmonic in Ω j \ Ω ◦ 1 j Q 1 -elements a Ω j ( · , · ) -harmonic w.r.t. ker (Ξ j | Ω j ) 2 Ass. 1 = ⇒ 2nd extension possible ⇒ b j ( · , · ) SPD on space Ass. 2 = of eigenfunctions with λ < ∞ C. Pechstein et al abstract two-level Schwarz 14 / 24

  19. Sufficient conditions for Assumptions 1 and 2 Assumptions 1 and 2 hold if all a τ ( · , · ) definite curl ( ν curl u ) + u or if certain mixed “boundary” value problems solvable: Last conditions easy to check for concrete PDEs: kernel of Darcy controlled by one Dirichlet DOF kernel of 3D Elasticity controlled by three non-collinear DOFs C. Pechstein et al abstract two-level Schwarz 15 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend