meshfree adaptative aitken schwarz
play

Meshfree Adaptative Aitken-Schwarz DTD Domain Decomposition for - PowerPoint PPT Presentation

AS DDM Meshfree Adaptative Aitken-Schwarz DTD Domain Decomposition for Darcy flow Outline DtoN map The GSAM Aitken- D.Tromeur-Dervout Schwarz Adaptive CDCSP/ICJ-UMR5208 Universit e Lyon 1, Aitken- Schwarz 15 Bd Latarjet, 69622


  1. AS DDM Meshfree Adaptative Aitken-Schwarz DTD Domain Decomposition for Darcy flow Outline DtoN map The GSAM Aitken- D.Tromeur-Dervout Schwarz Adaptive CDCSP/ICJ-UMR5208 Universit´ e Lyon 1, Aitken- Schwarz 15 Bd Latarjet, 69622 Villeurbanne, France. Aitken meshfree Dedicated to Alain Bourgeat’s 60 th birthday Scaling Up and Modeling for Transport and Flow in Porous Media Dubrovnik, Croatia, 13-16 October 2008 Partially founded by : GDR MOMAS, ANR-TL-07 LIBRAERO, ANR-CIS-07 MICAS

  2. AS DDM DTD Outline DtoN map Objectives : make a Schwarz DDM that has : The GSAM scalable properties Aitken- Schwarz Artificial condition independant of the parameter Adaptive Aitken- (even make convergent a divergent Schwarz method) Schwarz can be used as ”black box”, no direct impact on the Aitken meshfree implementation of local solver.

  3. Outline AS DDM DTD Outline The Dirichlet-Neumann Map 1 DtoN map The GSAM Aitken- The Generalized Schwarz Alternating Method 2 Schwarz Adaptive Aitken- Schwarz The Aitken-Schwarz Method 3 Aitken meshfree Non separable operator , non regular mesh, adaptive 4 Aitken-Schwarz Aitken meshfree acceleration 5

  4. The Dirichlet to Neumann map AS DDM DTD Outline Let Ω ⊂ R n a bounded domain with Γ := ∂ Ω Lipschitz. DtoN map The GSAM The trace operator : γ 0 Aitken- Schwarz ∀ u ∈ H 1 (Ω) , ∃ γ 0 u ∈ H 1 / 2 (Γ) satisfying Adaptive Aitken- Schwarz || γ 0 u || H 1 / 2 (Γ) ≤ c T . || u || H 1 (Ω) . (1) Aitken meshfree vice versa the bounded extension operator : ε ∀ v ∈ H 1 / 2 (Γ) , ∃ ε v ∈ H 1 (Ω) satisfying γ 0 ε v = v and || ε v || H 1 (Ω) ≤ c IT . || v || H 1 / 2 (Γ) . (2)

  5. The Dirichlet to Neumann map AS DDM DTD Outline Let Ω ⊂ R n a bounded domain with Γ := ∂ Ω Lipschitz. DtoN map The GSAM The trace operator : γ 0 Aitken- Schwarz ∀ u ∈ H 1 (Ω) , ∃ γ 0 u ∈ H 1 / 2 (Γ) satisfying Adaptive Aitken- Schwarz || γ 0 u || H 1 / 2 (Γ) ≤ c T . || u || H 1 (Ω) . (1) Aitken meshfree vice versa the bounded extension operator : ε ∀ v ∈ H 1 / 2 (Γ) , ∃ ε v ∈ H 1 (Ω) satisfying γ 0 ε v = v and || ε v || H 1 (Ω) ≤ c IT . || v || H 1 / 2 (Γ) . (2)

  6. ∂ [ a ji ( x ) ∂ Set L ( x ) u ( x ) = − Σ n u ( x )] , a ji ∈ L ∞ (Ω) (3) AS DDM i , j = 1 ∂ x j ∂ x i DTD Outline L ( . ) is assumed to be uniformly elliptic, DtoN map The GSAM i , j = 1 a ji ( x ) ξ j ξ l ≥ c 0 . | ξ | 2 , ∀ ξ ∈ R n , ∀ x ∈ Ω Σ n Aitken- Schwarz Adaptive The conormal derivative γ 1 is given by Aitken- Schwarz i , j = 1 n j ( x )[ a ji ( x ) ∂ Aitken γ 1 u ( x ) := Σ n u ( x )] , ∀ x ∈ Γ meshfree ∂ x i where n ( x ) is the exterior unit normal vector. n ∂ v ( x ) a ji ( x ) ∂ � � a ( u , v ) = u ( x ) ∂ x j ∂ x i Ω i , j = 1 � � = Lu ( x ) v ( x ) dx + γ 1 u ( x ) γ 0 v ( x ) dS x Ω Γ

  7. ∂ [ a ji ( x ) ∂ Set L ( x ) u ( x ) = − Σ n u ( x )] , a ji ∈ L ∞ (Ω) (3) AS DDM i , j = 1 ∂ x j ∂ x i DTD Outline L ( . ) is assumed to be uniformly elliptic, DtoN map The GSAM i , j = 1 a ji ( x ) ξ j ξ l ≥ c 0 . | ξ | 2 , ∀ ξ ∈ R n , ∀ x ∈ Ω Σ n Aitken- Schwarz Adaptive The conormal derivative γ 1 is given by Aitken- Schwarz i , j = 1 n j ( x )[ a ji ( x ) ∂ Aitken γ 1 u ( x ) := Σ n u ( x )] , ∀ x ∈ Γ meshfree ∂ x i where n ( x ) is the exterior unit normal vector. n ∂ v ( x ) a ji ( x ) ∂ � � a ( u , v ) = u ( x ) ∂ x j ∂ x i Ω i , j = 1 � � = Lu ( x ) v ( x ) dx + γ 1 u ( x ) γ 0 v ( x ) dS x Ω Γ

  8. ∂ [ a ji ( x ) ∂ Set L ( x ) u ( x ) = − Σ n u ( x )] , a ji ∈ L ∞ (Ω) (3) AS DDM i , j = 1 ∂ x j ∂ x i DTD Outline L ( . ) is assumed to be uniformly elliptic, DtoN map The GSAM i , j = 1 a ji ( x ) ξ j ξ l ≥ c 0 . | ξ | 2 , ∀ ξ ∈ R n , ∀ x ∈ Ω Σ n Aitken- Schwarz Adaptive The conormal derivative γ 1 is given by Aitken- Schwarz i , j = 1 n j ( x )[ a ji ( x ) ∂ Aitken γ 1 u ( x ) := Σ n u ( x )] , ∀ x ∈ Γ meshfree ∂ x i where n ( x ) is the exterior unit normal vector. n ∂ v ( x ) a ji ( x ) ∂ � � a ( u , v ) = u ( x ) ∂ x j ∂ x i Ω i , j = 1 � � = Lu ( x ) v ( x ) dx + γ 1 u ( x ) γ 0 v ( x ) dS x Ω Γ

  9. Necas Lem. ⇒ ∃ ! u = u 0 + ε g ∈ H 1 (Ω) sol. of Dirichlet Pb AS DDM L ( x ) u ( x ) = f ( x ) , for x ∈ Ω , γ 0 u ( x ) = g ( x ) , for x ∈ Γ (4) DTD Outline Then defining the linear application ∀ w ∈ H 1 / 2 (Γ) DtoN map The GSAM � Aitken- l ( w ) = a ( u , ε w ) − f ( x ) ε w ( c ) dx . Schwarz Ω Adaptive Aitken- Riez thm : ∃ λ ∈ H − 1 / 2 (Γ) : � λ, w � L 2 (Γ) = l ( w ) ∀ w ∈ H 1 / 2 (Γ) . Schwarz Aitken meshfree Hence, the conormal derivative λ ∈ H − 1 / 2 (Γ) satisfies � � f ε w dx ∀ w ∈ H 1 / 2 (Γ) . λ w ds x = a ( u 0 + ε g , ε w ) − Γ Ω ⇒ f fixed, we have a DtoN map : g = γ 0 u �→ λ := γ 1 u γ 1 u ( x ) = Sg ( x ) − Nf ( x ) , ∀ w ∈ Γ (5)

  10. Necas Lem. ⇒ ∃ ! u = u 0 + ε g ∈ H 1 (Ω) sol. of Dirichlet Pb AS DDM L ( x ) u ( x ) = f ( x ) , for x ∈ Ω , γ 0 u ( x ) = g ( x ) , for x ∈ Γ (4) DTD Outline Then defining the linear application ∀ w ∈ H 1 / 2 (Γ) DtoN map The GSAM � Aitken- l ( w ) = a ( u , ε w ) − f ( x ) ε w ( c ) dx . Schwarz Ω Adaptive Aitken- Riez thm : ∃ λ ∈ H − 1 / 2 (Γ) : � λ, w � L 2 (Γ) = l ( w ) ∀ w ∈ H 1 / 2 (Γ) . Schwarz Aitken meshfree Hence, the conormal derivative λ ∈ H − 1 / 2 (Γ) satisfies � � f ε w dx ∀ w ∈ H 1 / 2 (Γ) . λ w ds x = a ( u 0 + ε g , ε w ) − Γ Ω ⇒ f fixed, we have a DtoN map : g = γ 0 u �→ λ := γ 1 u γ 1 u ( x ) = Sg ( x ) − Nf ( x ) , ∀ w ∈ Γ (5)

  11. Necas Lem. ⇒ ∃ ! u = u 0 + ε g ∈ H 1 (Ω) sol. of Dirichlet Pb AS DDM L ( x ) u ( x ) = f ( x ) , for x ∈ Ω , γ 0 u ( x ) = g ( x ) , for x ∈ Γ (4) DTD Outline Then defining the linear application ∀ w ∈ H 1 / 2 (Γ) DtoN map The GSAM � Aitken- l ( w ) = a ( u , ε w ) − f ( x ) ε w ( c ) dx . Schwarz Ω Adaptive Aitken- Riez thm : ∃ λ ∈ H − 1 / 2 (Γ) : � λ, w � L 2 (Γ) = l ( w ) ∀ w ∈ H 1 / 2 (Γ) . Schwarz Aitken meshfree Hence, the conormal derivative λ ∈ H − 1 / 2 (Γ) satisfies � � f ε w dx ∀ w ∈ H 1 / 2 (Γ) . λ w ds x = a ( u 0 + ε g , ε w ) − Γ Ω ⇒ f fixed, we have a DtoN map : g = γ 0 u �→ λ := γ 1 u γ 1 u ( x ) = Sg ( x ) − Nf ( x ) , ∀ w ∈ Γ (5)

  12. Necas Lem. ⇒ ∃ ! u = u 0 + ε g ∈ H 1 (Ω) sol. of Dirichlet Pb AS DDM L ( x ) u ( x ) = f ( x ) , for x ∈ Ω , γ 0 u ( x ) = g ( x ) , for x ∈ Γ (4) DTD Outline Then defining the linear application ∀ w ∈ H 1 / 2 (Γ) DtoN map The GSAM � Aitken- l ( w ) = a ( u , ε w ) − f ( x ) ε w ( c ) dx . Schwarz Ω Adaptive Aitken- Riez thm : ∃ λ ∈ H − 1 / 2 (Γ) : � λ, w � L 2 (Γ) = l ( w ) ∀ w ∈ H 1 / 2 (Γ) . Schwarz Aitken meshfree Hence, the conormal derivative λ ∈ H − 1 / 2 (Γ) satisfies � � f ε w dx ∀ w ∈ H 1 / 2 (Γ) . λ w ds x = a ( u 0 + ε g , ε w ) − Γ Ω ⇒ f fixed, we have a DtoN map : g = γ 0 u �→ λ := γ 1 u γ 1 u ( x ) = Sg ( x ) − Nf ( x ) , ∀ w ∈ Γ (5)

  13. Outline AS DDM DTD Outline The Dirichlet-Neumann Map 1 DtoN map The GSAM Aitken- The Generalized Schwarz Alternating Method 2 Schwarz Adaptive Aitken- Schwarz The Aitken-Schwarz Method 3 Aitken meshfree Non separable operator , non regular mesh, adaptive 4 Aitken-Schwarz Aitken meshfree acceleration 5

  14. The Generalized Schwarz Alternating Method (GSAM) B. Engquist and H.-K. Zhao, Appl. Numer. Math. 27 (1998), no. 4, 341–365. AS DDM DTD Consider Ω = Ω 1 ∪ Ω 2 with the two artificial boundaries Γ 1 , Γ 2 Outline intersecting ∂ Ω . DtoN map The GSAM Algorithm Aitken- Schwarz L ( x ) u 2 n + 1 f ( x ) , ∀ x ∈ Ω 1 , u 2 n + 1 Adaptive ( x ) = ( x ) = g ( x ) , ∀ x ∈ ∂ Ω 1 \ Γ 1 , Aitken- 1 1 Schwarz ∂ u 2 n + 1 ∂ u 2 n ( x ) 2 ( x ) Λ 1 u 2 n + 1 1 = Λ 1 u 2 n + λ 1 2 + λ 1 , ∀ x ∈ Γ 1 Aitken 1 ∂ n 1 ∂ n 1 meshfree L ( x ) u 2 n + 2 f ( x ) , ∀ x ∈ Ω 2 , u 2 n + 2 ( x ) = ( x ) = g ( x ) , ∀ x ∈ ∂ Ω 2 \ Γ 2 , 2 2 ∂ u 2 n + 2 ∂ u 2 n + 1 ( x ) ( x ) Λ 2 u 2 n + 2 2 = Λ 2 u 2 n + 1 1 + λ 2 + λ 2 , ∀ x ∈ Γ 2 . 2 1 ∂ n 2 ∂ n 2 where Λ i ’s are some operators and λ i ’s are constants. (Λ 1 = I , λ 1 = 0 , Λ 2 = 0 , λ 2 = 1 ) Schwarz Neumann-Dirichlet Algorithm

  15. AS DDM If λ 1 = 1 and Λ 1 is the DtoN operator at Γ 1 associated to the DTD homogeneous PDE in Ω 2 with homogeneous boundary Outline condition on ∂ Ω 2 ∩ ∂ Ω then GSAM converge in two steps. DtoN map proof Let e n i = u − u n , i = 1 , 2 , , then The GSAM Aitken- L ( x ) e 1 0 , ∀ x ∈ Ω 1 , e 1 Schwarz 1 ( x ) = 1 ( x ) = 0 , ∀ x ∈ ∂ Ω 1 \ Γ 1 , Adaptive ∂ e 1 2 + ∂ e 0 1 ( x ) 2 ( x ) Aitken- Λ 1 e 1 = Λ 1 e 0 + , ∀ x ∈ Γ 1 Schwarz 1 ∂ n 1 ∂ n 1 Aitken meshfree since Λ 1 is the DtoN operator at Γ 1 in Ω 2 ∂ e 0 − ∂ e 0 + ∂ e 0 2 + Λ 1 e 0 2 2 = 0 , ⇒ e 1 = 1 = 0 in Ω 1 2 ∂ n 1 ∂ n 2 ∂ n 2 Hence we get the exact solution in two steps []

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend