ambipolar diffusion effects on the weakly ionized
play

Ambipolar Diffusion Effects on the Weakly Ionized Turbulence - PowerPoint PPT Presentation

Ambipolar Diffusion Effects on the Weakly Ionized Turbulence Molecular Clouds UC-HIPACC: The Future of AstroComputing Conference San Diego Supercomputer Center December 16 - 17, 2010 Pak Shing Li Astronomy Department, UC Berkeley


  1. Ambipolar Diffusion Effects on the Weakly Ionized Turbulence Molecular Clouds UC-HIPACC: The Future of AstroComputing Conference San Diego Supercomputer Center December 16 - 17, 2010 Pak Shing Li Astronomy Department, UC Berkeley Collaborators: Chris McKee (UC Berkeley) Richard Klein (LLNL, UC Berkeley) Robert Fisher (Univ. of Massachusetts at Dartmouth )

  2. Molecular Clouds Magnetic field in MCs • ≤ 21 μ G in MCs, magnetically supercritical (M/M c =1.4~2.1) Troland & Crutcher (2008) • ~ 6 μ G in CNM, magnetically subcritical Heiles & Troland (2005 ) • Approximate equipartition: 1.3 < E turb /E mag < 1.9 Carina Nebula Goldsmith et al. (2008) Weintraub et al. (2000) Supersonic turbulent MCs • Broad molecular line widths in MCs: 1 ~ 10 km/s Zuckerman & Palmer (1974) Line width - size relation: v  l 0.5  P( k )  k -2 Larson (1981), Passot et al. (1988) • • Hierarchical filamentary and clump structures Low et al. (1984), Scalo (1984), Stenholm (1984), Elmegreen & Scalo (2004) MHD turbulenc e

  3. Ideal or Non-Ideal? Ideal MHD: ionized gas frozen with magnetic field Weakly Ionized MCs (ions + neutrals): n    7 i x 10 Caselli (1998), Bergin et al. (1999) i n n • ions are frozen with B-field eB        ( μG) rads 3 1 -1 9.58 10 Z B ci m c i 1      6 t 10 s t 1  in in ci n • neutrals depend on coupling: Ambipolar Diffusion Mestel & Spitzer (1956) Slow AD-driven Quasi-Static Star Formation Process: t AD ~ 10 t ff Spitzer (1968), Nakano & Tademaru (1972), Mouschovias (1976, 1977, 1979), Nakano & Nakamura (1978), Shu (1983), Lizano & Shu (1989), Fiedler & Mouschovias (1992,1993), …

  4. Numerical Method (ZEUS-MP + AD) 2-Fluid Semi-Implicit Method: Tóth (1995), Mac Low & Smith (1997)               n i v ; v ;   n n i i t t  v                  n v v P v v g ;  n n n n n AD i n n i n t  v 1                       i v v P v v g B B ;   i i i i i AD i n i n i t 4  B         Isothermal v B ; B 0  i t          3 i t x v / 10  Ai i n Heavy-Ion Approximation: Li, McKee, Klein (2006) γ AD ρ i = const. χ i ≡ ρ i / ρ n Li et al. (2008) • Criterion: f I « f D  f L => R AD ( l vi ) » M Ai 2 •    AD Reynolds number 4 v t ≤ 1 weak coupling    AD i n AD R ( ) AD 2 t B » 1 strong coupling AD dyn

  5. Models Parameters 128 3 , 256 3 , and one 512 3 Li, McKee, Klein, & Fisher (2008): • Model parameters: M rms = 3, β = 0.1, k = 1~2, T = 10K, periodic boundaries • Convergence studies in time, resolution, and ionization mass faction χ i • Convergence studies in power spectral indexes 1.02 1.015 <U B > / U B,0 U B / U B,0  i = 0.01 1.01 1.01 speedup = 100 1.005 R AD ( l vi ) » M Ai 2 1 1 0 0.5 1 1.5 2 -1 -2 -3 -4 t f log 10  i Five 512 3 , no gravity, 600,000 CPU hours R AD ( l 0 ) : 0.12, 1.2, 12, 120, 1200

  6. Velocity Power Spectral Index ← Pure HD Ideal MHD → 2.5 n v,i III II n v,n n B Burgers Spectrum 2 I McKee, Li, & Klein (2010) n I: ideal MHD R AD   1.5 II: standard AD Iroshnikov-Kraichnan Spectrum R AD › M A 2 III: strong AD 2 › R AD › M Ai M A 2 1 -1 0 1 2 3 10 10 10 10 10 R AD (l 0 )

  7. R AD of 27 Observed Molecular Clouds 6 6 5 5 4 4 N N 3 3 2 2 1 1 0 0 0 1 2 0 1 2 10 10 10 10 10 10 R AD (D MC ) R AD (D MC ) Crutcher (1999) McKee, Li, & Klein (2010)

  8. Velocity Power Spectral Index ← Pure HD Ideal MHD → 2.5 n v,i III II n v,n n B Burgers Spectrum 2 I McKee, Li, & Klein (2010) n I: ideal MHD R AD   1.5 II: standard AD Iroshnikov-Kraichnan Spectrum R AD › M A 2 III: strong AD 2 › R AD › M Ai M A 2 1 -1 0 1 2 3 10 10 10 10 10 R AD (l 0 ) Crutcher (1999)

  9. Clump Mass function and Mass/Flux Ratio Turbulence Fragmentation: Padoan & Nordlund (2002), Padoan et al. (2007) Hennebelle & Chabrier (2008, 2009)     4lnm+ σ 2 -x     N(m)dm=C 1+erf m dm 2 2 σ     -n P (k)=k v McKee, Li, & Klein (2010)

  10. Morphological Change of Turbulence Gas with AD I II III ↑B R AD (l 0 ) = 1200 R AD (l 0 ) = 12 R AD (l 0 ) = 0.12 Z Z Z X X X 1 2 3 4 5 6 7 2 4 6 8 10 12 2 4 6 8 10 12

  11. Conclusions • 2-fluid semi-implicit + heavy-ion approximation is fast and works well on turbulence simulations! AD Reynolds Number R AD ( l vi ) » M Ai 2 Li, McKee, & Klein (2006), Li et al. (2008) • Many statistical properties (e.g. velocity and density power spectra, density PDF) of the magnetized turbulence system change as a function of R AD , which is a good parameter on measuring how important AD is. Li et al. (2008) • AD is still important in weakly ionized MCs at small length scale and that leads to important astrophysical implication on many aspects of the MCs (e.g. morphological change, clump mass function, mass/flux ratio, ions & neutrals line width ratio, correction of Chandrasekhar-Fermi method, turbulence enhancement to AD diffusion, AD heating, …) when AD is strong. McKee, Li, & Klein (2010), Li, McKee, & Klein (2011)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend