affine symmetries in supergravity
play

Affine symmetries in supergravity work with Hermann Nicolai, Martin - PowerPoint PPT Presentation

Affine symmetries in supergravity work with Hermann Nicolai, Martin Weidner, Thomas Ortiz IHES 05/2013 Henning Samtleben 1998 motivation : 2D supergravity symmetries classically integrable field theory affine symmetry group E 9


  1. Affine symmetries in supergravity work with Hermann Nicolai, Martin Weidner, Thomas Ortiz IHES 05/2013 
 Henning Samtleben 


  2. 1998 motivation : 2D supergravity symmetries classically integrable field theory affine symmetry group E 9 — solution generating (transitive) infinite-dimensional symmetries : E 9 E 10 E 11 deformations affine symmetry also organizes the deformations of the theory infinite-dim. HW representations of non-propagating fields supersymmetry SO(9) supergravity : first example of such a 2d deformation : IIA on S 8 matrix model holography Henning Samtleben ENS Lyon

  3. motivation : SO(9) supergravity Domain wall / QFT correspondence [H.J. Boonstra, K. Skenderis, P. Townsend, 1999] holography for Dp-branes : AdS p+2 x S 8-p warped dual to SYM p+1 theory gaugings of maximal supergravity [Salam, Sezgin, 1984] D6 IIA AdS 8 x S 2 d=8, SO(3) [Samtleben, Weidner, 2005] D5 IIB AdS 7 x S 3 d=7, SO(4) [Pernici, Pilch, van Nieuwenhuizen, 1984] D4 IIA AdS 6 x S 4 d=6, SO(5) D3 IIB AdS 5 x S 5 d=5, SO(6) [Günaydin, Romans, Warner, 1985] D2 IIA AdS 4 x S 6 d=4, SO(7) [Hull, 1984] D1 IIB AdS 3 x S 7 d=3, SO(8) [de Wit, Nicolai, 1982] D0 IIA AdS 2 x S 8 d=2, SO(9) ?? Henning Samtleben ENS Lyon

  4. plan Affine symmetries in supergravity motivation D=4 supergravity : symmetries and deformations D=2 supergravity : symmetries and deformations example : SO(9) supergravity conclusions Henning Samtleben ENS Lyon

  5. 1998 D=4 supergravity symmetries and deformations Henning Samtleben ENS Lyon

  6. 1998 D=4 supergravity: some generic features L = R + G ij ( φ ) ∂ µ φ i ∂ µ φ j + I ΛΣ ( φ ) F Λ µ ν F µ ν Σ + R ΛΣ ( φ ) F Λ ∗ F µ ν Σ + · · · µ ν bosonic sector of maximal (N=8) D=4 supergravity Henning Samtleben ENS Lyon

  7. 1998 D=4 supergravity: symmetries L = R + G ij ( φ ) ∂ µ φ i ∂ µ φ j + I ΛΣ ( φ ) F Λ µ ν F µ ν Σ + R ΛΣ ( φ ) F Λ ∗ F µ ν Σ + · · · µ ν � scalar sector: G/H coset space sigma model E 7 SU(8) V ∈ E 7 V ≈ V · H H ∈ SU(8) triangular gauge exp { φ m N m } exp φ λ h λ � ⇥ V = Cartan nilpotent grading E 7 action → G V H G, V V − φ m → φ m + λ m shift symmetries G = exp { λ m N m } : G = exp { λ m N † ‘hidden’ symmetries φ i m } non-linear! (on ) (linear on ) V Henning Samtleben ENS Lyon

  8. 1998 D=4 supergravity: self-duality L = R + G ij ( φ ) ∂ µ φ i ∂ µ φ j + I ΛΣ ( φ ) F Λ µ ν F µ ν Σ + R ΛΣ ( φ ) F Λ ∗ F µ ν Σ + · · · µ ν self-duality (D=4: electric-magnetic duality for vectors) ∂ L Λ = 2 ∂ [ µ A ν ] Λ field strength: dual: F µ ν G µ ν Λ = − ε µ νρσ ∂ F ρσ Λ Λ = 0 Bianchi: ∂ [ µ F νρ ] dual vectors: G µ ν Λ = 2 ∂ [ µ A ν ] Λ eom: ∂ [ µ G νρ ] Λ = 0 symplectic rotation non-local (on ) ! A Λ F Λ U ΛΣ Z ΛΣ F Σ � � � � � � µ − → V ΛΣ ( A Λ G Λ G Σ (local on ) W ΛΣ µ , A µ Λ ) choice of an electric frame, analogous pattern for (n—1)-forms in D=2n E 7 is realized (on-shell) on the combined set of 28 electric +28 magnetic vectors Henning Samtleben ENS Lyon

  9. 1998 D=4 supergravity: gauging L = R + G ij ( φ ) ∂ µ φ i ∂ µ φ j + I ΛΣ ( φ ) F Λ µ ν F µ ν Σ + R ΛΣ ( φ ) F Λ ∗ F µ ν Σ + · · · µ ν self-duality (D=4: electric-magnetic duality for vectors) electric gauging (“standard”) gauging (embedding tensor) M Θ M α t α = ∂ µ − A µ Λ Θ Λ α t α − A µ Λ Θ Λ α t α D µ = ∂ µ − A µ magnetic gauging (“non-standard”) consistency encoded in a set of algebraic constraints on the embedding tensor α Θ M P Ω K ) P = 0 α t α ,N linear: (susy / consistent tensor hierarchy) Θ ( M 56 x 133 = 56 + 912 + 6480 quadratic: (generalized Jacobi / locality) β + ( t α ) N γ = 0 γ Θ M α Θ N P Θ M α Θ P f αβ Ω MN Θ M α Θ N β = 0 ⇐ ⇒ Henning Samtleben ENS Lyon

  10. D=4 supergravity: gauging 1998 L = R + G ij ( φ ) ∂ µ φ i ∂ µ φ j + I ΛΣ ( φ ) F Λ µ ν F µ ν Σ + R ΛΣ ( φ ) F Λ ∗ F µ ν Σ + · · · µ ν self-duality (D=4: electric-magnetic duality for vectors) electric gauging (“standard”) gauging M Θ M α t α = ∂ µ − A µ Λ Θ Λ α t α − A µ Λ Θ Λ α t α D µ = ∂ µ − A µ magnetic gauging (“non-standard”) off-shell formulation � � 8 Θ Λ α B α ∧ 2 ∂ A Λ + X MN Λ A M ∧ A N − 1 β B β − 1 L top = 4 Θ Λ + · · · upon introduction of additional two-forms (dual to scalars) and BF couplings gauging of on-shell symmetries [de Wit, HS, Trigiante ] Henning Samtleben ENS Lyon

  11. 1998 D=2 supergravity affine symmetries Henning Samtleben ENS Lyon

  12. 1998 D=2 supergravity ungauged Lagrangian � ⇥ ˙ √− g ρ − R + tr[ P µ P µ ] + L ferm ( ψ I , ψ I A ) − 1 L = 2 , χ 4 V − 1 ∂ µ V = Q µ + P µ coset space sigma model coupled to dilaton gravity off-shell symmetry (target space isometries): E 8 field equations dilaton scalars J µ ≡ ρ V P µ V − 1 ∂ µ J µ conserved E 8 Noether current M = 0 � ρ = 0 has a remarkable structure : (infinite tower of) dual scalar potentials classical integrability, affine Lie-Poisson symmetry E 9 duality ⇤ µ ˜ ⇥ = � µ ν ⇤ ν ⇥ dual dilaton dual (D–2) forms ∂ µ Y M ≡ ε µ ν J ν dual scalars M Henning Samtleben ENS Lyon

  13. 1998 D=2 supergravity ungauged duality ⇤ µ ˜ ⇥ = � µ ν ⇤ ν ⇥ dual dilaton dual (D–2) forms ∂ µ Y M ≡ ε µ ν J ν dual scalars M classical integrability, affine Lie-Poisson symmetry E 9 (1) δ 1 ˜ ρ = λ shift symmetries (248) Λ α δ α , 1 Y 1 = Λ Λ α δ α , 1 V = 0 ρ V [ V − 1 Λ V ] p Λ α δ α , − 1 V = [ Λ , Y 1 ] V − ˜ (248) ‘hidden’ symmetries � extends to an infinite tower: � � ρ + 1 V P ± V − 1 + 1 dual scalars 2 ρ 2 ∂ ± Y 2 = ± ρ ˜ 2[ Y 1 , ∂ ± Y 1 ] , � � ∓ 1 V P ± V − 1 + [ Y 1 , ∂ ± Y 2 ] − 1 2 ρ 3 ∓ ρ ˜ ρ 2 − ρ 2 ˜ ∂ ± Y 3 = 6[ Y 1 , [ Y 1 , ∂ ± Y 1 ]]] . ρ V V − V V V � � � 1 � [ Λ , Y 2 ] + 1 2 ρ 2 + ˜ ‘hidden’ symmetries (248) Λ α δ α , − 2 V = ρ 2 V [ V − 1 Λ V ] p 2[[ Λ , Y 1 ] , Y 1 ] − ˜ ρ [ Λ , Y 1 ] V + etc... close into (half of) the affine algebra ! Henning Samtleben ENS Lyon

  14. D=2 supergravity ungauged 1998 linear system the equations of motion can be encoded as integrability conditions of a linear system [Belinskii, Zakharov / Maison / Julia / Nicolai, Warner] V = Q ± + 1 ⇥ γ V − 1 ∂ ± ˆ ˆ ( light-cone-coord. ) 1 ± γ P ± x ± ˆ for a group-valued function and the spectral parameter V ( γ ) γ = 1 � ⇥ ⇤ w + ˜ ( w + ˜ ρ ) 2 − ρ 2 ρ − ρ expansion in w gives rise to the infinite series of dual scalars V = . . . e Y 3 w − 3 e Y 2 w − 2 e Y 1 w − 1 V ˆ ± ρ V P ± V − 1 = ∂ ± Y 1 2 ρ 2 ) V P ± V − 1 + 1 ρ + 1 = − ( ± ρ ˜ 2 [ Y 1 , ∂ ± Y 1 ] ∂ ± Y 2 = ∂ ± Y 3 . . . Henning Samtleben ENS Lyon

  15. 1998 D=2 supergravity ungauged affine symmetry group E 9 action parametrized by a meromorphic function Λ ( w ) � � V − 1 Λ ( w )ˆ ˆ V = ˜ Λ h + ˜ Λ ( w ) ∂ w ˆ V ( w )ˆ V − 1 ( w ) Λ k δσ = κ − tr w dw � � 1 2 γ ( w ) ⇥ f ( w ) ⇤ w � 2 π i f ( w ) V − 1 δ V = � � ˜ Λ k ( w ) ρ (1 − γ ( w ) 2 ) w extends to the set of dual scalars � � V V − δ ˜ ρ = λ Λ h ( v ) + γ ( v ) (1 − γ 2 ( w )) � 1 � �� V − 1 δ ˆ ˆ V ( w ) = λ ˆ V − 1 ∂ w ˆ V ( w ) + ˜ ˜ ˜ Λ ( w ) − Λ k ( v ) γ ( w ) (1 − γ 2 ( v )) v − w v (1 coset action E 9 / K(E 9 ) } m < 0 hidden symmetries { t α m , L 1 , k } — off-shell Virasoro L 1 ˜ ρ = 1 } shift central extension [Julia ] k σ = 1 symmetries m > 0 deformations : gauge part of this nonlinear, nonlocal, on-shell symmetry Henning Samtleben ENS Lyon

  16. 1998 D=2 supergravity deformations [HS, Martin Weidner ] Henning Samtleben ENS Lyon

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend