abelian hypermultiplet gaugings and bps vacua in n 2
play

Abelian hypermultiplet gaugings and BPS vacua in N = 2 supergravity - PowerPoint PPT Presentation

Introduction N = 2 supergravity Khler geometries Khler isometries BPS solutions Conclusion Abelian hypermultiplet gaugings and BPS vacua in N = 2 supergravity Harold Erbin LPTHE, Universit Paris 6 (France) OctoberNovember 2014


  1. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Abelian hypermultiplet gaugings and BPS vacua in N = 2 supergravity Harold Erbin LPTHE, Université Paris 6 (France) October–November 2014 Based on [1409.6310, H. E.–Halmagyi] . 1 / 44

  2. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Outline Introduction 1 N = 2 supergravity 2 Kähler geometries 3 Kähler isometries 4 BPS solutions 5 Conclusion 6 2 / 44

  3. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Outline: 1. Introduction 1 Introduction 2 N = 2 supergravity 3 Kähler geometries Kähler isometries 4 BPS solutions 5 Conclusion 6 3 / 44

  4. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Motivations Asymptotically AdS 4 BPS black holes (BH) are very important: BH entropy computations → need near-horizon geometries String theory and M-theory embeddings AdS /CFT correspondence Black hole: interpolation magnetic AdS (UV) → near-horizon geometry (IR) AdS 4 and near-horizon geometry → supergravity solutions 4 / 44

  5. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion BPS equations for AdS 4 vacua BPS equations reduces to 1 �K u , V� = 0 �P , V� ∝ , R AdS P moment map, K u Killing vectors, V symplectic section But u K u = P = ω 3 ⇒ �P , V� = 0 . → no regular solution [0911.2708, Cassani et al.][1204.3893, Louis et al.] Missing piece u K u + W P = ω 3 → need to understand (special and) quaternionic isometries [de Wit–van Proeyen ’90] [hep-th/9210068, de Wit–Vanderseypen–van Proeyen] [hep-th/9310067, de Wit–van Proeyen] 5 / 44

  6. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Outline: 2. N = 2 supergravity 1 Introduction 2 N = 2 supergravity 3 Kähler geometries Kähler isometries 4 BPS solutions 5 Conclusion 6 6 / 44

  7. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion N = 2 supergravity: multiplets [hep-th/9605032, Andrianopoli et al.] [ Supergravity , Freedman–van Proeyen] Gravity multiplet { g µν , ψ α µ , A 0 µ } α = 1 , 2 n v vector multiplets { A i µ , λ α i , τ i } i = 1 , . . . , n v n h hypermultiplets { ζ A , q u } u = 1 , . . . , 4 n h , A = 1 , . . . , 2 n h 7 / 44

  8. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion N = 2 supergravity: bosonic lagrangian L bos = R 2 + 1 µν F Σ µν − 1 4 Im N ( τ ) ΛΣ F Λ 8 Re N ( τ ) ΛΣ ε µνρσ F Λ µν F Σ ρσ  − 1  ( τ ) ∂ µ τ i ∂ µ ¯ τ ¯ 2 h uv ( q ) ∂ µ q u ∂ µ q v − g i ¯ Field strengths F Λ = d A Λ , A Λ = ( A 0 , A i ) Λ = 0 , . . . , n v 8 / 44

  9. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Electromagnetic duality Dual (magnetic) field strengths � δ L bos � = Re N ΛΣ F Λ + Im N ΛΣ ⋆ F Λ G Λ = ⋆ δ F Λ Maxwell equations and Bianchi identities d F Λ = 0 , d G Λ = 0 invariant under symplectic transformations � � � � F Λ F Λ − → U U ∈ Sp (2 n v + 2 , R ) , G Λ G Λ The action is not invariant 9 / 44

  10. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Scalar geometry Non-linear sigma model: scalar fields → coordinates on target space M = M v ( τ i ) × M h ( q u ) with M v special Kähler manifold, dim R = 2 n v M h quaternionic Kähler manifold, dim R = 4 n h Isometry group (global symmetries) G ≡ ISO ( M ) , G ⊂ Sp (2 n v + 2) [hep-th/9605032, Andrianopoli et al.] 10 / 44

  11. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Gaugings: general case Local gauge group H H ⊂ G encoded by Killing vectors { k i Λ , k u Λ } Covariant derivatives on scalars (minimal coupling) � � Λ ( τ ) ∂ Λ ( q ) ∂ → D µ = ∂ µ − A Λ k i ∂τ i + k u ∂ µ − µ ∂ q u Generates scalar potential V ( τ, q ) → AdS 4 vacua 11 / 44

  12. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Outline: 3. Kähler geometries 1 Introduction 2 N = 2 supergravity 3 Kähler geometries Kähler isometries 4 BPS solutions 5 Conclusion 6 12 / 44

  13. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Kähler manifold: definition Manifold ( M , g ) with Hermitian metric d s 2 = 2 g i ¯  d τ i d ¯ τ ¯  , i = 1 , . . . , n Complex structure J 2 = − 1 , J g J t = g Fundamental 2-form  d τ i ∧ d ¯ τ ¯  , vol = Ω n Ω = − 2 J i ¯ Kähler condition d Ω = 0 13 / 44

  14. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Kähler manifold: Kähler potential Metric given by Kähler potential K ( τ, ¯ τ ) ∂ g i ¯  = ∂ i ∂ ¯  K , ∂ i ≡ ∂τ i Metric invariant under Kähler transformations τ ) + f ( τ ) + ¯ τ ) − → K ( τ, ¯ K ( τ, ¯ f (¯ τ ) 14 / 44

  15. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Special Kähler manifold: definition Kähler manifold with bundle Sp (2 n v + 2 , R ) and section � � X Λ F Λ = ∂ F v = , ∂ X Λ F Λ (assuming F exists) Prepotential F F ( λ X ) = λ 2 F ( X ) Homogeneous coordinates X Λ , special coordinates τ i = X i X 0 (common choice: X 0 = 1) 15 / 44

  16. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Special Kähler manifold: symplectic structure Symplectic inner product � � 0 1 � A , B � = A t Ω B = A Λ B Λ − A Λ B Λ , Ω = − 1 0 Kähler potential � X Λ ¯ X Λ � e − K = − i � v , ¯ F Λ − F Λ ¯ v � = − i Covariant section � � X Λ K K 2 v = e V = e 2 F Λ Covariant Kähler derivative � � ∂ i + 1 U i ≡ D i V = 2 ∂ i K V 16 / 44

  17. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Special Kähler manifold: structure Gauge coupling matrix N (built from F ) F Λ = N ΛΣ X Σ Complex structure M on the bundle (built from N ) MV = − i V , M D i V = i D i V 17 / 44

  18. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Special Kähler manifold: prepotentials Usual examples and Calabi–Yau have: cubic X i X j X k F = − D ijk X 0 quadratic F = i 2 η ΛΣ X Λ X Σ η = diag( − 1 , 1 , . . . , 1) 18 / 44

  19. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Quaternionic manifold: definition Metric d s 2 = h uv d q u d q v , u = 1 , . . . , 4 n h holonomy SU (2) × Sp ( n h ) Complex structure triplet J x , x = 1 , 2 , 3 J x h ( J x ) t = h ∀ x : SU (2) algebra J x J y = − δ xy + ε xyz J z Hyperkähler forms uv d q u ∧ d q v K x = J x 19 / 44

  20. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Quaternionic manifold: SU (2) properties SU (2) connection ω x = ω x u d q u Curvature 2-form Ω x = ∇ ω x = d ω x + 1 2 ε xyz ω y ∧ ω z with Ω x = λ K x , λ ∈ R Supersymmetry → λ = − 1 Fundamental 4-form Ω = Ω x ∧ Ω x , vol = Ω n d Ω = 0 , 20 / 44

  21. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Quaternionic manifold: c-map construction � � 2 b + e 4 φ − e 2 φ d σ + 1 d s 2 = d φ 2 +2 g a ¯ ¯ b d z a d ¯ 2 ξ t C d ξ 4 d ξ t CM d ξ z 4 a = 1 , . . . , n h − 1 , A = (0 , a ) Heisenberg fibers: Dilaton φ , axion σ , Ramond pseudo-scalars ξ = ( ξ A , ˜ ξ A ) Base special Kähler M z : Prepotential G , Kähler potential K Ω , metric g a ¯ b Symplectic vector Z = ( Z A , G A ) C symplectic metric, M complex structure 21 / 44

  22. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Outline: 4. Kähler isometries 1 Introduction 2 N = 2 supergravity 3 Kähler geometries Kähler isometries 4 BPS solutions 5 Conclusion 6 22 / 44

  23. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Killing vectors and Lie derivative Isometry of spacetime ( M , g ): transformation that preserved distance (i.e. the metric) Acts with Lie derivative, generated by Killing vector k L k g = 0 Set of Killing vectors → Lie algebra c [ k a , k b ] = f ab k c , a = 1 , . . . , dim ISO ( M ) 23 / 44

  24. Introduction N = 2 supergravity Kähler geometries Kähler isometries BPS solutions Conclusion Kähler manifolds: moment maps Holomorphic Killing vectors → preserve complex structure L k J = 0 Killing vectors given by moment maps ı = − i ∂ ¯ k i = i ∂ i P , k ¯ ı P τ ¯ P ( τ i , ¯ ı ) ∈ R Gives the coupling of the gravitini ψ α µ to A Λ µ Kähler potential invariant up to Kähler transformation L k K = 2 Re f 24 / 44

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend