phd defense black holes in n 2 supergravity
play

PhD defense Black holes in N = 2 supergravity Harold Erbin LPTHE, - PowerPoint PPT Presentation

PhD defense Black holes in N = 2 supergravity Harold Erbin LPTHE, Universit Pierre et Marie Curie (France) Wednesday 23rd September 2015 1 / 36 Papers H. Erbin and N. Halmagyi. Abelian Hypermultiplet Gaugings and BPS Vacua in N = 2


  1. PhD defense Black holes in N = 2 supergravity Harold Erbin LPTHE, Université Pierre et Marie Curie (France) Wednesday 23rd September 2015 1 / 36

  2. Papers ◮ H. Erbin and N. Halmagyi. “Abelian Hypermultiplet Gaugings and BPS Vacua in N = 2 Supergravity”. JHEP 2015.5 (May 2015), 1409.6310. ◮ H. Erbin and N. Halmagyi. “Quarter-BPS Black Holes in AdS 4 -NUT from N = 2 Gauged Supergravity”. Accepted in JHEP (Mar. 2015), 1503.04686. ◮ H. Erbin. “Janis-Newman algorithm: simplifications and gauge field transformation”. General Relativity and Gravitation 47.3 (Mar. 2015), 1410.2602. ◮ H. Erbin and L. Heurtier. “Five-dimensional Janis-Newman algorithm”. Classical and Quantum Gravity 32.16 (July 2015), p. 165004, 1411.2030. ◮ H. Erbin. “Deciphering and generalizing Demiański-Janis-Newman algorithm”. Submitted to Classical and Quantum Gravity (Nov. 2014), 1411.2909 ◮ H. Erbin and L. Heurtier. “Supergravity, complex parameters and the Janis-Newman algorithm”. Classical and Quantum Gravity 32.16 (July 2015), p. 165005, 1501.02188. 2 / 36

  3. Outline Introduction Motivations Supergravity and BPS solutions Demiański–Janis–Newman algorithm Conclusion 3 / 36

  4. Outline: 1. Introduction Introduction Motivations Supergravity and BPS solutions Demiański–Janis–Newman algorithm Conclusion 4 / 36

  5. Modèle standard et relativité générale Modèle standard : ◮ interactions entre particules élémentaires ◮ trois forces (électromagnétisme, faible, forte) ◮ théorie quantique 5 / 36

  6. Modèle standard et relativité générale Modèle standard : ◮ interactions entre particules élémentaires ◮ trois forces (électromagnétisme, faible, forte) ◮ théorie quantique Relativité générale ◮ force gravitationnelle = déformation de l’espace-temps ◮ nécessaire si vitesse/gravité élevées ◮ théorie classique 5 / 36

  7. Modèle standard et relativité générale Modèle standard : ◮ interactions entre particules élémentaires ◮ trois forces (électromagnétisme, faible, forte) ◮ théorie quantique Relativité générale ◮ force gravitationnelle = déformation de l’espace-temps ◮ nécessaire si vitesse/gravité élevées ◮ théorie classique Objectifs de la physique moderne : ◮ quantifier la gravité ◮ décrire ensemble le modèle standard et la gravité → théorie des cordes 5 / 36

  8. Supersymétrie Deux types de particules : ◮ les bosons : transmettent les forces (e.g. le photon) ◮ les fermions : constituent la matière (e.g. l’électron) 6 / 36

  9. Supersymétrie Deux types de particules : ◮ les bosons : transmettent les forces (e.g. le photon) ◮ les fermions : constituent la matière (e.g. l’électron) Supersymétrie Q susy | boson � = | fermion � , Q susy | fermion � = | boson � 6 / 36

  10. Supersymétrie Deux types de particules : ◮ les bosons : transmettent les forces (e.g. le photon) ◮ les fermions : constituent la matière (e.g. l’électron) Supersymétrie Q susy | boson � = | fermion � , Q susy | fermion � = | boson � Supergravité relativité générale + supersymétrie ◮ limite de la théorie des cordes ◮ unification interactions/gravité ◮ meilleur comportement quantique N : nombre de Q susy différents Choix : N = 2 (compromis liberté/simplicité) 6 / 36

  11. Trous noirs ◮ champ gravitationnel extrême ◮ horizon : limite au-delà de laquelle rien ne peut s’échapper ◮ centre = singularité (gravité infinie) ◮ description complète : nécessite une gravité quantique 7 / 36

  12. Trous noirs ◮ champ gravitationnel extrême ◮ horizon : limite au-delà de laquelle rien ne peut s’échapper ◮ centre = singularité (gravité infinie) ◮ description complète : nécessite une gravité quantique ◮ bac à sable pour tester les théories de gravité quantique ◮ peu de paramètres : ressemble à une particule 7 / 36

  13. Outline: 2. Motivations Introduction Motivations Supergravity and BPS solutions Demiański–Janis–Newman algorithm Conclusion 8 / 36

  14. Plebański–Demiański solution (’76) Most general black hole solution [Plebański–Demiański ’76] ◮ Einstein–Maxwell theory with cosmological constant Λ ◮ equivalently pure N = 2 gauged supergravity ◮ 6 parameters ◮ mass m ◮ magnetic charge p ◮ NUT charge n ◮ rotation j ◮ electric charge q ◮ acceleration a ◮ natural pairing as complex parameters m + in , q + ip , j + ia 9 / 36

  15. Motivations (AdS) black holes ◮ sandbox for quantum gravity ◮ understand microstates from string theory ◮ adS/CFT correspondence 10 / 36

  16. Motivations (AdS) black holes ◮ sandbox for quantum gravity ◮ understand microstates from string theory ◮ adS/CFT correspondence Black hole: interpolation magnetic adS (UV) → near-horizon geometry (IR) AdS 4 and near-horizon geometry → supergravity solutions 10 / 36

  17. Motivations (AdS) black holes ◮ sandbox for quantum gravity ◮ understand microstates from string theory ◮ adS/CFT correspondence Black hole: interpolation magnetic adS (UV) → near-horizon geometry (IR) AdS 4 and near-horizon geometry → supergravity solutions 10 / 36

  18. Roadmap Goals ◮ understand asymptotically adS 4 black holes ◮ Plebański–Demiański in N = 2 gauged supergravity with vector- and hypermultiplets 11 / 36

  19. Roadmap Goals ◮ understand asymptotically adS 4 black holes ◮ Plebański–Demiański in N = 2 gauged supergravity with vector- and hypermultiplets Two strategies ◮ study simpler solution classes → BPS equations ◮ use a solution generating technique → Janis–Newman algorithm 11 / 36

  20. BPS equations ◮ BPS equations fermions = 0 , δ Q (fermions) = 0 ◮ background preserves part of supersymmetry ◮ first order differential equations on bosonic fields ◮ imply (most of) the equations of motion N = 2: give Einstein and scalar equations, but not Maxwell [1005.3650, Hristov–Looyestijn–Vandoren] 12 / 36

  21. Outline: 3. Supergravity and BPS solutions Introduction Motivations Supergravity and BPS solutions Demiański–Janis–Newman algorithm Conclusion 13 / 36

  22. N = 2 supergravity Algebra � Q β � Q α , ¯ ∼ δ β α P , [ J , Q α ] ∼ γ · Q α , [ R , Q α ] ∼ U β { Q α , Q β } ∼ ε αβ Z , α Q β P momentum, Z central charge, J angular momentum automorphism U , R-symmetry U (2) R 14 / 36

  23. N = 2 supergravity Algebra � Q β � Q α , ¯ ∼ δ β α P , [ J , Q α ] ∼ γ · Q α , [ R , Q α ] ∼ U β { Q α , Q β } ∼ ε αβ Z , α Q β P momentum, Z central charge, J angular momentum automorphism U , R-symmetry U (2) R Field content ◮ gravity multiplet µ , A 0 { g µν , ψ α µ } , α = 1 , 2 ◮ n v vector multiplets { A i µ , λ α i , τ i } , i = 1 , . . . , n v ◮ n h hypermultiplets u = 1 , . . . , 4 n h , { ζ A , q u } , A = 1 , . . . , 2 n h 14 / 36

  24. Bosonic Lagrangian ε µνρσ L bos = R 2 + 1 µν F Σ µν − 1 4 Im N ( τ ) ΛΣ F Λ √− g Re N ( τ ) ΛΣ F Λ µν F Σ ρσ 8  − 1 2 h uv ( q ) D µ q u D µ q v − V ( τ, q ) τ ¯  ( τ ) ∂ µ τ i ∂ µ ¯ − g i ¯ Electric and magnetic field strengths F Λ = d A Λ , Λ = 0 , . . . , n v , � δ L bos � = Re N ΛΣ F Λ + Im N ΛΣ ⋆ F Λ G Λ = ⋆ δ F Λ 15 / 36

  25. Scalar geometry Non-linear sigma model: scalar fields = coordinates on target space M = M v ( τ i ) × M h ( q u ) ◮ M v special Kähler manifold, dim R = 2 n v , U (1) bundle ◮ M h quaternionic manifold, dim R = 4 n h , SU (2) bundle Consequence of R-symmetry group U (2) R = SU (2) R × U (1) R 16 / 36

  26. Gaugings Isometry group G (global symmetries) and local gauge group K G ≡ ISO ( M ) , K ⊂ G Here K = U (1) n v +1 , two simpler possibilities: ◮ Fayet–Iliopoulos (FI): n h = 0, ψ α µ charged under U (1) ⊂ SU (2) R ◮ quaternionic gauging: Killing vectors k u Λ Λ = θ A k u Λ k u A , [ k Λ , k Σ ] = 0 k u A generates iso ( M h ), θ A Λ gauging parameters A = 1 , . . . , dim ISO ( M h ) 17 / 36

  27. Symplectic covariance ◮ Field strength and Maxwell–Bianchi equations � � F Λ F = , d F = 0 G Λ Maxwell–Bianchi equations invariant under Sp (2 n v + 2 , R ) 18 / 36

  28. Symplectic covariance ◮ Field strength and Maxwell–Bianchi equations � � F Λ F = , d F = 0 G Λ Maxwell–Bianchi equations invariant under Sp (2 n v + 2 , R ) ◮ Section � � L Λ τ i = L i V = , L 0 , M Λ ◮ Maxwell charges � � � p Λ 1 Q = F = q Λ Vol Σ Σ ◮ Killing vectors, prepotentials and compensators � � � � k u Λ P x Λ K u = P x = K u ω x u + W x = , k u P x Λ Λ FI: P 3 = cst , EM charges of ψ α µ ◮ covariant formalism for BPS equation [1012.3756, Dall’Agata–Gnecchi] 18 / 36

  29. Quartic function Symplectic vector A : order-4 homogeneous polynomial I 4 = I 4 ( A , τ i ) Define symmetric 4-tensor ∂ 4 I 4 ( A ) t MNPQ = ∂ A M ∂ A N ∂ A P ∂ A Q Different arguments and gradient I 4 ( A , B , C , D ) = t MNPQ A M B N C P D Q 4 ( A , B , C ) M = Ω MR t RNPQ A N B P C Q I ′ 19 / 36

  30. Quartic function Symplectic vector A : order-4 homogeneous polynomial I 4 = I 4 ( A , τ i ) Define symmetric 4-tensor ∂ 4 I 4 ( A ) t MNPQ = ∂ A M ∂ A N ∂ A P ∂ A Q Different arguments and gradient I 4 ( A , B , C , D ) = t MNPQ A M B N C P D Q 4 ( A , B , C ) M = Ω MR t RNPQ A N B P C Q I ′ Quartic invariant Symmetric space [hep-th/9210068, de Wit–Vanderseypen–Van Proeyen] ∂ i I 4 ( A ) = 0 19 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend