nut black holes in n 2 gauged supergravity
play

NUT Black Holes in N = 2 Gauged Supergravity Harold Erbin Lpthe , - PowerPoint PPT Presentation

NUT Black Holes in N = 2 Gauged Supergravity Harold Erbin Lpthe , Universit Paris 6Jussieu (France) 2015 Based on 1410.2602 , 1411.2909 , 1501.02188 , 1503.04686 Collaborations with Nick Halmagyi ( Lpthe ) and Lucien Heurtier ( Cpht , cole


  1. NUT Black Holes in N = 2 Gauged Supergravity Harold Erbin Lpthe , Université Paris 6–Jussieu (France) 2015 Based on 1410.2602 , 1411.2909 , 1501.02188 , 1503.04686 Collaborations with Nick Halmagyi ( Lpthe ) and Lucien Heurtier ( Cpht , École Polytechnique) 1 / 35

  2. Outline Introduction BPS equations Demiański–Janis–Newman algorithm Conclusion 2 / 35

  3. Outline: 1. Introduction Introduction BPS equations Demiański–Janis–Newman algorithm Conclusion 3 / 35

  4. Plebański–Demiański solution (’76) Most general black hole solution [Plebański–Demiański ’76] ◮ Einstein–Maxwell theory with cosmological constant Λ (equivalently pure N = 2 gauged supergravity) ◮ 6 parameters ◮ mass m ◮ magnetic charge p ◮ NUT charge n ◮ rotation a ◮ electric charge q ◮ acceleration α 4 / 35

  5. Plebański–Demiański solution (’76) Most general black hole solution [Plebański–Demiański ’76] ◮ Einstein–Maxwell theory with cosmological constant Λ (equivalently pure N = 2 gauged supergravity) ◮ 6 parameters ◮ mass m ◮ magnetic charge p ◮ NUT charge n ◮ rotation a ◮ electric charge q ◮ acceleration α ◮ natural pairing as complex parameters m + in , q + ip , a + i α 4 / 35

  6. Plebański–Demiański solution (’76) Most general black hole solution [Plebański–Demiański ’76] ◮ Einstein–Maxwell theory with cosmological constant Λ (equivalently pure N = 2 gauged supergravity) ◮ 6 parameters ◮ mass m ◮ magnetic charge p ◮ NUT charge n ◮ rotation a ◮ electric charge q ◮ acceleration α ◮ natural pairing as complex parameters m + in , q + ip , a + i α ◮ BPS branches [hep-th/9203018, Romans] [hep-th/9512222, Kostelecky–Perry] [hep-th/9808097, Caldarelli–Klemm] [hep-th/0003071, Alonso-Alberca–Meessen–Ortín] [1303.3119, Klemm–Nozawa] 4 / 35

  7. Motivations Black holes ◮ sandbox for quantum gravity ◮ understand microstates from string theory ◮ adS/CFT correspondence 5 / 35

  8. Motivations Black holes ◮ sandbox for quantum gravity ◮ understand microstates from string theory ◮ adS/CFT correspondence NUT charge for AdS/CFT ◮ gauge dual: Chern–Simons on Lens spaces S 3 / Z n [1212.4618, Martelli–Passias–Sparks] ◮ fluid/gravity: NUT charge → vorticity [1206.4351, Caldarelli et al.] 5 / 35

  9. Roadmap Goals ◮ understand asymptotically adS 4 black holes ◮ Plebański–Demiański in N = 2 gauged supergravity with vector- and hypermultiplets 6 / 35

  10. Roadmap Goals ◮ understand asymptotically adS 4 black holes ◮ Plebański–Demiański in N = 2 gauged supergravity with vector- and hypermultiplets Two strategies ◮ study simpler solution classes → BPS equations ◮ use a solution generating technique → Janis–Newman algorithm 6 / 35

  11. Roadmap Goals ◮ understand asymptotically adS 4 black holes ◮ Plebański–Demiański in N = 2 gauged supergravity with vector- and hypermultiplets Two strategies ◮ study simpler solution classes → BPS equations ◮ use a solution generating technique → Janis–Newman algorithm This talk: focus on NUT charge (plus mass and dyonic), no hypermultiplet 6 / 35

  12. Fields of N = 2 supergravity ◮ Gravity multiplet and n v vector multiplets α = 1 , 2 µ , A 0 { g µν , ψ α { A i µ , λ α i , τ i } , µ } , i = 1 , . . . , n v 7 / 35

  13. Fields of N = 2 supergravity ◮ Gravity multiplet and n v vector multiplets α = 1 , 2 µ , A 0 { g µν , ψ α { A i µ , λ α i , τ i } , µ } , i = 1 , . . . , n v ◮ Lagrangian with Fayet–Iliopoulos gaugings 2 + 1 µν F Σ µν − 1 ε µνρσ L bos = R 4 Im N ( τ ) ΛΣ F Λ √− g Re N ( τ ) ΛΣ F Λ µν F Σ ρσ 8  − V ( τ ) τ ¯  ( τ ) ∂ µ τ i ∂ µ ¯ − g i ¯ Scalars: non-linear sigma model on special Kähler manifold (prepotential F → Kähler potential K ) 7 / 35

  14. Fields of N = 2 supergravity ◮ Gravity multiplet and n v vector multiplets α = 1 , 2 µ , A 0 { g µν , ψ α { A i µ , λ α i , τ i } , µ } , i = 1 , . . . , n v ◮ Lagrangian with Fayet–Iliopoulos gaugings 2 + 1 µν F Σ µν − 1 ε µνρσ L bos = R 4 Im N ( τ ) ΛΣ F Λ √− g Re N ( τ ) ΛΣ F Λ µν F Σ ρσ 8  − V ( τ ) τ ¯  ( τ ) ∂ µ τ i ∂ µ ¯ − g i ¯ Scalars: non-linear sigma model on special Kähler manifold (prepotential F → Kähler potential K ) ◮ Electric and magnetic field strengths F Λ = d A Λ , Λ = 0 , . . . , n v , � δ L bos � = Re N ΛΣ F Λ + Im N ΛΣ ⋆ F Λ G Λ = ⋆ δ F Λ 7 / 35

  15. Symplectic covariance ◮ Field strength and Maxwell equations � � F Λ F = d F = 0 , G Λ Maxwell equations invariant under Sp (2 n v + 2 , R ) 8 / 35

  16. Symplectic covariance ◮ Field strength and Maxwell equations � � F Λ F = d F = 0 , G Λ Maxwell equations invariant under Sp (2 n v + 2 , R ) ◮ Section � � τ i = L i L Λ V = , L 0 , M Λ ◮ Maxwell charges � � � 1 p Λ � Q = F = Vol Σ q Λ Σ ◮ Fayet–Iliopoulos gaugings � � g Λ G = g Λ electric/magnetic charges of ψ α µ under U (1) ⊂ SU (2) R ◮ covariant formalism for BPS equation [1012.3756, Dall’Agata–Gnecchi] 8 / 35

  17. Quartic function Symplectic vector A : order-4 homogeneous polynomial I 4 = I 4 ( A , τ i ) Define symmetric 4-tensor ∂ 4 I 4 ( A ) t MNPQ = ∂ A M ∂ A N ∂ A P ∂ A Q Different arguments and gradient I 4 ( A , B , C , D ) = t MNPQ A M B N C P D Q 4 ( A , B , C ) M = Ω MR t RNPQ A N B P C Q I ′ 9 / 35

  18. Quartic function Symplectic vector A : order-4 homogeneous polynomial I 4 = I 4 ( A , τ i ) Define symmetric 4-tensor ∂ 4 I 4 ( A ) t MNPQ = ∂ A M ∂ A N ∂ A P ∂ A Q Different arguments and gradient I 4 ( A , B , C , D ) = t MNPQ A M B N C P D Q 4 ( A , B , C ) M = Ω MR t RNPQ A N B P C Q I ′ Quartic invariant Symmetric space [hep-th/9210068, de Wit–Vanderseypen–Van Proeyen] [0902.3973, Cerchiai et al.] ∂ i I 4 ( A ) = 0 9 / 35

  19. Quartic function: some identities Arbitrary space I 4 (Re V ) = I 4 (Im V ) = 1 I 4 ( V ) = 0 , 16 Re V = 2 I ′ 4 (Im V ) Symmetric space 4 ( I ′ 4 ( A ) , A , A ) = − 8 I 4 ( A ) A I ′ I ′ 4 ( I ′ 4 ( A ) , I ′ 4 ( A ) , A ) = 8 I 4 ( A ) I ′ 4 ( A ) 4 ( A )) = − 16 I 4 ( A ) 2 A I ′ 4 ( I ′ 10 / 35

  20. Quartic invariants ◮ cubic prepotential (symmetric very special Kähler manifold) F = − D ijk τ i τ j τ k quartic invariant I 4 ( Q ) = − ( q Λ p Λ ) 2 + 1 16 p 0 ˆ D ijk q i q j q k − 4 q 0 D ijk p i p j p k + 9 ˆ D ijk D k ℓ m q i q j p ℓ p m 16 11 / 35

  21. Quartic invariants ◮ cubic prepotential (symmetric very special Kähler manifold) F = − D ijk τ i τ j τ k quartic invariant I 4 ( Q ) = − ( q Λ p Λ ) 2 + 1 16 p 0 ˆ D ijk q i q j q k − 4 q 0 D ijk p i p j p k + 9 ˆ D ijk D k ℓ m q i q j p ℓ p m 16 ◮ quadratic prepotential F = i 2 η ΛΣ X Λ X Σ quartic invariant � i � 2 2 η ΛΣ p Λ p Σ + i 2 η ΛΣ q Λ q Σ I 4 ( Q ) = 11 / 35

  22. Outline: 2. BPS equations Introduction BPS equations Demiański–Janis–Newman algorithm Conclusion 12 / 35

  23. Ansatz AdS–NUT dyonic black hole d s 2 = − e 2 U � d t + 2 n H ( θ ) d φ � 2 + e − 2 U d r 2 + e 2( V − U ) d Σ 2 g � + ˜ � d t + 2 n H ( θ ) d φ A Λ = ˜ q Λ ( r ) p Λ ( r ) H ( θ ) d φ τ i = τ i ( r ) U = U ( r ), V = V ( r ); Riemann surface Σ g of genus g   − cos θ κ = 1   g = d θ 2 + H ′ ( θ ) 2 d φ 2 , d Σ 2 H ( θ ) = κ = 0 θ    cosh θ κ = − 1 with curvature κ = sign(1 − g ) NUT charge: preserves SO (3) isometry 13 / 35

  24. Root structure In general, e 2 V : quartic polynomial e 2 V = v 0 + v 1 r + v 2 r 2 + v 3 r 3 + v 4 r 4 ◮ naked singularity: pair of complex conjugate roots, v 3 = 0 → no horizon ◮ black hole: two real roots, v 0 = 0 → horizon and finite temperature ◮ extremal black hole: real double root, v 0 = v 1 = 0 → two coincident horizons, vanishing temperature, near-horizon adS 2 × Σ g ◮ double extremal black hole: pair of real double roots, v 0 = v 1 = 0 and v 3 = √ v 2 v 4 ◮ ultracold black hole: real triple root, v 0 = v 1 = v 2 = 0 [hep-th/9203018, Romans] 14 / 35

  25. Root structure In general, e 2 V : quartic polynomial e 2 V = v 0 + v 1 r + v 2 r 2 + v 3 r 3 + v 4 r 4 ◮ naked singularity: pair of complex conjugate roots, v 3 = 0 → no horizon ◮ extremal black hole: real double root, v 0 = v 1 = 0 → two coincident horizons, vanishing temperature, near-horizon adS 2 × Σ g ◮ double extremal black hole: pair of real double roots, v 0 = v 1 = 0 and v 3 = √ v 2 v 4 14 / 35

  26. Constant scalar black hole Minimal gauged supergravity ( n v = 0 , Λ = − 3 g 2 ) e 2 V = g 2 ( r 2 + n 2 ) 2 + ( κ + 4 g 2 n 2 )( r 2 − n 2 ) − 2 mr + P 2 + Q 2 q = Qr − nP e 2( V − U ) = r 2 + n 2 , ˜ ˜ p = P r 2 + n 2 , 15 / 35

  27. Constant scalar black hole Minimal gauged supergravity ( n v = 0 , Λ = − 3 g 2 ) e 2 V = g 2 ( r 2 + n 2 ) 2 + ( κ + 4 g 2 n 2 )( r 2 − n 2 ) − 2 mr + P 2 + Q 2 q = Qr − nP e 2( V − U ) = r 2 + n 2 , ˜ ˜ p = P r 2 + n 2 , 1 / 4-BPS conditions [hep-th/0003071, Alonso-Alberca–Meessen–Ortín] P = ± κ + 4 g 2 n 2 m = | 2 gnQ | , 2 g Two pairs of complex conjugate roots 15 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend