advances in electrolyte thermodynamics thermophysical
play

Advances in Electrolyte Thermodynamics Thermophysical Electrical - PowerPoint PPT Presentation

Advances in Electrolyte Thermodynamics Thermophysical Electrical Electrical conductivity conductivity property frameworks Viscosity Viscosity AQ thermo MSE thermo Standard-state: Standard- HKF (via fitting Self - state: HKF Self -


  1. Advances in Electrolyte Thermodynamics

  2. Thermophysical Electrical Electrical conductivity conductivity property frameworks Viscosity Viscosity AQ thermo MSE thermo Standard-state: Standard- HKF (via fitting Self - state: HKF Self - diffusivity diffusivity equations) (direct) G EX : Bromley- G EX : MSE Thermal Zemaitis no limit on conductivity I < 30m; x org < 0.3 concentration Solid phases: Solid phases: Surface equilibrium thermochemical tension constants (Kfits) properties Interfacial 2 nd liquid phase: 2 nd liquid phase: tension SRK (non-ionic) MSE (ionic) Interfacial phenomena: ion exchange, surface complexation, molecular adsorption

  3. Scope • • • • • • • •

  4. New Chemistries in 2012 - 2014 • • • • • • • • • • • •

  5. New Chemistries in 2012 - 2014 • • • • • • • • • • • • • • •

  6. Revisions and Extensions in 2012 - 2014 • • • • • • • • • • • • • •

  7. Rare earth elements: Addressing critical material needs • • • • • • • • •

  8. Solubility of NdCl 3 and EuCl 3 in aqueous solutions 8 Zelikman 1971 Zuravlev et al. 1971 Bunyakina et al. 1991,1992 Shevtsova et al. 1961 Kost et al. 1970 Dilebaeva et al. 1973 Zhuravlev et al. 1980 Zhuravlev et al. 1973 Bayanov et al. 1979 7 Shevtsova et al. 1968 Friend and Hale 1940, 1940a Matignon 1906 NdCl 3 + H 2 O sokolova et al. 1980 Sokolova et al. 1981 Sokolova et al. 1981 Williams et al. 1925 Nikolaev et al. 1978 Sokolova et al. 1979 Sokolova et al. 1979 Nikolaev et al. 1977 Shevtsova et al. 1958 6 Sopueva et al. 1978 Calc. - NdCl3.6H2O Calc. - NdCl3.7H2O Calc. - NdCl3.8H2O Calc. - Ice 5 NdCl 3 .7H 2 O 4 m NdCl 3  Similarity of phase NdCl 3 .6H 2 O 3 behavior of chlorides NdCl 3 .8H 2 O 2  Searching for 1 Ice regularities in phase 0 -60 -40 -20 0 20 40 60 80 100 120 behavior of rare-earth T / o C 4.5 elements EuCl 3 .6H2O 4 EuCl 3 .8H2O 3.5 3 Sokolova 1987 Sokolova 1987 Nikolaev et al. 1977 Powel 1959 Nikolaev et al. 1978 Kotlyar-Sharipov et al. 1977 2.5 Nikolaev et al. 1967 Nikolaev et al. 1971 mEuCl 3 Spedding et al. 1974 Spedding et al. 1975 Spedding et al. 1977 Spedding et al. 1967 2 Wang et al. 2007 Sokolova 1987 Calc. - Ice Calc. - EuCl3.8H2O EuCl 3 + H 2 O Calc. - EuCl3.6H2O 1.5 Ice 1 0.5 0 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 T / o C

  9. Solubility of Nd(OH) 3 and Eu(OH) 3 1.E+00 30C - NaCF3SO3 - Wood (2002) am 30C Nd(OH) 3 crystalline 50C - NaCF3SO3 - Wood 1.E-01 (2002) am 50C ---- Nd(OH) 3 amorphous 100C - NaCF3SO3 - Wood 1.E-02 (2002) cr 100C 150C - NaCF3SO3 - Wood 1.E-03 (2002) cr 150C Nd(OH) 3 200C - NaCF3SO3 - Wood (2002) cr 1.E-04 200C Nd total (m) 250C - NaCF3SO3 - Wood (2002) cr 250C 1.E-05 290C - NaCF3SO3 - Wood (2002) cr 290C 1.E-06 25C - 0.1 m NaCl - Silva (1982) cr  Primary effects: 25C - 0.1 m NaCl 1.E-07 22C - 0.01 m NaClO4 - Makino (1993) am 22C - 0.01 m NaClO4 1.E-08 pH and T 25C - 0.1 m NaCl - Neck (2009) am 25C - 0.1 m NaCl 25C - 0.5 m NaCl - Neck (2009) 1.E-09  Secondary am 25C - 0.5 m NaCl 25C - 2.6 m NaCl - Neck (2009) 1.E-10 am 25C - 2.6 m NaCl effects: ionic 25C - 5.6 m NaCl - Neck (2009) 1.E-11 am 25C - 5.6 m NaCl 3 4 5 6 7 8 9 10 11 12 13 14 15 25C - 0.1 m NaCl - Rao (1996) environment cr pH 25C - 5.6 m NaCl - Runde (1994) cr (NaCl, NaClO 4 , 1.00E+00 Calc. @ 25C - 0.001m HClO4 Calc. @ 25C - 0.1m NaOH Calc. @ 25C - 0.001m HCl 1.00E-01 etc.) Calc. @ 50C - 0.001m HClO4 Calc. @ 50C - 0.001m HCl 1.00E-02 Calc. @ 50C - 0.1m NaOH  Qualitatively Calc. @ 100C - 0.001m HClO4 1.00E-03 Calc. @ 100C - 0.001m HCl Calc. @ 100C - 0.1m NaOH m Eu(OH) 3 1.00E-04 similar behavior Calc. @ 150C - 0.001m HClO4 Calc. @ 150C - 0.001m HCl 1.00E-05 Calc. @ 150C - 0.1m NaOH of various REEs 1.00E-06 1.00E-07 1.00E-08 Eu(OH) 3 1.00E-09 1.00E-10 3 5 7 9 11 13 15 pH

  10. Elemental mercury in oil and gas environments 1.0E-05 Solubility of Hg 0 in Hydrocarbons: Solubility of Hg 0 in water 1.0E-04 aromatic n-alkane vs. aromatic n-alkane 1.0E-05 x-Hg 0 1.0E-06 n-C10H22 n-C8H18 x-Hg 0 1.0E-06 1.0E-07 n-C7H16 n-C6H14 1.0E-08 Ps - 1994M isopropylbenzene (C9) Ps - 1971GH o-xylene (c8) Ps - Sorokin et al. 1978 1.0E-09 toluene (c7) 500 bar - Sorokin et al. 1978 benzene (c6) 1000 bar-Sorokin et al 1978 1.0E-10 1.0E-07 0 100 200 300 0 10 20 30 40 50 60 t,  C t,  C  Predicting mercury behavior in hydrocarbon – water – CO 2 – H 2 S systems

  11. 1.0E+00 solubility of HgCO 3 .2HgO (25  C) Hg carbonate and sulfide Hg(II)_total, mol · kg -1 1.0E-01 pCO2=1atm, NaClO4=0.5m pCO2=1atm, NaClO4=3m 1.0E-02 pCO2=0.5atm, NaClO4=3m  HgCO 3 + H 2 O (in presence of CO 2 ) 1.0E-03 25~90  C, P s ~1 atm 1.0E-04 1 2 3 4 5 6 7 8 pH 150C, Na2S=0.178m 0.18 50C, Na2S=0.178m 0.16 50C, Na2S=0.269m 0.14 50C, Na2S=0.52m 0.12 HgS, mol · kg -1  HgS + H 2 O (in presence of 0.10 0.08 Solubility of HgS sulfides) Refs: 1964D & 1961D 0.06 17~270  C, P s ~1800 atm 0.04 0.02 0.00 0 300 600 900 1200 1500 1800 p , atm

  12. CO 2 capture in mixed-salts • • Miscibility gap

  13. Modeling carboxylic acid chemistry: Methacrylic acid 170 Chubarov et al. 1974 t[C] Chubarov et al. 1974 (y) 160 Danov et al. 1991 VLE Danov et al. 1991 (y) Eck and Maurer 2003 150 Eck and Maurer 2003 (y) Frolov et al. 1962 Frolov et al. 1962 (y) 140 MSE MSE (y) 15 130 t[C] LLE + SLE 120 10 110 100 Bruhl 1880 x MAA 5 Chubarov et al. 1978 LLE 90 Chubarov et al. 1978 SLE 0 0.2 0.4 0.6 0.8 1 Eck and Maurer 2003 LLE Eck and Maurer 2003 SLE Efremov et al. 1981 0 Hino et al. 2011 • Karabaev et al. 1985 Kolesnikv et al. 1979 Oswald and Urquharta 2011 Rabinovich et al. 1967 x MAA MSE -5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 •

  14. Modeling carboxylic acid chemistry: Methacrylic acid 4 Jasperson et al. log K2v 1989 Gas-phase 3 8.0 dimerization Dong et al. 2008 pKa 7.5 Larsson 1932 2 Peralta et al. 2005 Pomogailo et al. 200 7.0 MSE 1 6.5 0 6.0 5.5 -1 Acid dissociation 5.0 1/T -2 4.5 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 t[C] 4.0 1 -50 0 50 100 150 200 250 300 • Braude and Evans 1956 0.8 Daubert et al. 1987 % difference to DIPPR equation Chubarov et al. 1989 (eq) 0.6 Chubarov et al. 1978 • 0.4 Chubarov et al. 1974 Eck and Maurer 2003 (eq) • 0.2 Eck and Maurer 2003 Frolov et al. 1962 0 Gachokidse 1947 Jasperson et al. 1989 -0.2 Li et al. 1989 • Leontiev et al. 1970 -0.4 Meitzner 1940 Ratchford et al. 1944 • Pure acid vapor -0.6 Stull 1947 Van-chin-syan et al. 1996 -0.8 pressure • White 1943 t[C] MSE -1 0 50 100 150 200 250

  15. Filling important gaps in MSE • • • • •

  16. Filling important gaps in MSE 9.E-06 • Oxygen solubility in NaCl solution, P Oxygen = 0.2094 8.E-06 Millero et al. (2002b), 0.5°C Millero et al. (2002b), 5°C Millero et al. (2002b), 10°C Millero et al. (2002b), 15°C 7.E-06 Millero et al. (2002b), 20°C Millero et al. (2002a), 25°C • Sherwood1991LimnolOceanogr235-cal.25°C Millero et al. (2002b), 25°C 6.E-06 MacArthur (1915), 25°C Millero et al. (2002b), 30°C • Millero et al. (2002b), 35°C Millero et al. (2002b), 40°C 5.E-06 Millero et al. (2002b), 45°C • x O 2 4.E-06 3.E-06 2.E-06 1.E-06 0.E+00 0 1 2 3 4 5 6 7 m NaCl

  17. H 2 S – NaCl – H 2 O mixtures • Salting-out effect of NaCl in both the VLE and LLE regions • Pressure effect is different in the VLE and LLE regions • Three-phase VLLE pressure is nearly independent of NaCl

  18. Prediction of pH Systems containing acid gases • Experimental data are CO 2 + H 2 O scarce • Problems with reproducible measurements in saline systems • Prediction is essential • pH rapidly decreases with acid gas partial pressure and then plateaus

  19. Prediction of pH Systems containing acid gases • Salt content CO 2 + NaCl + H 2 O reduces pH • Effect of nonideality – interactions with ions • Data are scattered • Pure prediction is well within the scattering of data

  20. pH in mixed-solvent systems MEG + water + salt mixtures 10.0 In aqueous solutions (water-based): MEG = 90 wt%, P CO2 ~1atm   9.0 80˚C, pH   pH log a 80˚C, pH st  st H 25˚C, pH 8.0 In MEG + water solutions 25˚C, pH st 7.0 (mixed solvent-based): pH   6.0     pH log c c  H O MEGH 3 5.0 MEG + H 2 O + Both protonated solvent species, H 3 O + NaHCO 3 + NaCl 4.0 and MEGH + , contribute to the solution pH 3.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 2 H 2 O = H 3 O + + OH - (m NaHCO 3 ) 0.5 (mol·kg solvent -1 ) 0.5 2 HOC 2 H 4 OH (aq) = HOC 2 H 4 OH 2 + + HOC 2 H 4 O -1

  21. Removal of H 2 S through formation of thianes (S-substitutes of triazinane ring): R=CH 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend