advanced cogeneration systems advanced cogeneration
play

ADVANCED COGENERATION SYSTEMS - - ADVANCED COGENERATION SYSTEMS A - PowerPoint PPT Presentation

Institut Teknologi Teknologi Bandung Bandung, Indonesia , Indonesia Institut Fakultas Teknologi Teknologi Industri Industri - - Departemen Departemen Teknik Teknik Kimia Kimia Fakultas 30 March March 2010 in 2010 in Bandung Bandung


  1. Institut Teknologi Teknologi Bandung Bandung, Indonesia , Indonesia Institut Fakultas Teknologi Teknologi Industri Industri - - Departemen Departemen Teknik Teknik Kimia Kimia Fakultas 30 March March 2010 in 2010 in Bandung Bandung 30 ADVANCED COGENERATION SYSTEMS - - ADVANCED COGENERATION SYSTEMS A DESALINATION- -POWER PLANT POWER PLANT- -CONCEPT CONCEPT A DESALINATION Dr.- -Ing. Claudia Werner Ing. Claudia Werner Dr. Technische Universitä ät Berlin, Germany t Berlin, Germany Technische Universit Fachgebiet Fachgebiet Anlagen- und Anlagen- und Sicherheitstechnik Sicherheitstechnik

  2. CONTENT 1. Introduction 2. State of the Art of Desalination/Electricity Production 3. Combination - Desalination Plant/CCGT Plant 4. Recent Research - Thermoeconomics and Optimisation Approaches 5. Simulation Process 6. Results of the Simulation Process 7. Conclusion and Outlook 8. Acknowledgement Dr.-Ing. Claudia Werner

  3. 1. INTRODUCTION - Cogeneration Systems Cogeneration is the simultaneous production of heat and power in a single thermodynamic process Cogeneration systems such as CCGT power plants or block heat and power plants are available on the market Application is motivated by different issues of climate protection Advanced cogeneration systems: - Combined production of Electricity/District Cooling - Combined production of Electricity/Chemicals - Combined production of Electricity/Fresh Water Source: http://www.vattenfall.de, 2010. Dr.-Ing. Claudia Werner

  4. 1. INTRODUCTION - Water Supply/Water Withdrawal Increasing world water withdrawals since 1900 Source: http://www.worldwatercouncil.org, 2010. Dr.-Ing. Claudia Werner

  5. 1. INTRODUCTION - Withdrawal to Availability Ratio Source: Konishi,T. Global Water Issues and Nuclear Seawater Desalination, 2010. Dr.-Ing. Claudia Werner

  6. 1. INTRODUCTION - Situation in Indonesia 18,000 island, 6,000 inhabited by 215 million people endowed with 5,590 rivers flowing over 5,500 km³/year of water Source: www.weltkarte.com, 2010 . annual amount of precipitation in the range of 1,000 mm to 5,000 mm fresh water supply by shallow water wells and deep water ground surface annual water resources in Indonesia: 1,690 x 10³ m³/km² or 16.8 x 10³ m³/capita intrusions of seawater detected in Jakarta, Medan, Semarang, Surabaya and Ujung Pandang Dr.-Ing. Claudia Werner

  7. 1. INTRODUCTION - Water Resource and Water Demand Island(s) Water Resource Water Demand (mill. m³/year) (mill. m³/year) 2000 2015 Java 187,000 83,378 164,672 Lesser Sunda 60,000 13,827 42,274 Celebes 247,000 25,555 77,305 Sumatra 738,000 25,298 49,583 Borneo 1,008,000 8,204 23,093 Mollucas+Papua 981,000 589 1,886 Indonesia 3,221,000 156,850 358,813 Source: Sunaryo, G. R. Prospect on Desalination and other non-electric Applications of Nuclear Energy in Indonesia, 2010. Dr.-Ing. Claudia Werner

  8. 1. INTRODUCTION - Desalination Processes and Projects Thermal Processes Thermal Processes - Multi Effect Distillation (MED) - Multi Effect Distillation (MED) - Multi Stage Flash (MSF) - Multi Stage Flash (MSF) - Thermal Vapor Compression (TVC) - Thermal Vapor Compression (TVC) Non-Thermal Processes Non-Thermal Processes - Reverse Osmosis (RO) - Reverse Osmosis (RO) - Mechanical Vapor Compression (MVC) - Mechanical Vapor Compression (MVC) Desalination Projects in Indonesia Desalination Projects in Indonesia - Fossil Desalination Projects (Pulau Seribu, Sulawesi) - Fossil Desalination Projects (Pulau Seribu, Sulawesi) - Nuclear Desalination Projects (Madura Island) - Nuclear Desalination Projects (Madura Island) - Renewable Desalination Projects (Cituis) - Renewable Desalination Projects (Cituis) Source: Konishi,T. Global Water Issues and Nuclear Seawater Desalination, 2010. Dr.-Ing. Claudia Werner

  9. 2. STATE OF THE ART - Desalination Plants Multi Effect Distillation (MED) Typical capacity: 500 - 18,000 m³/d Electric consumption: 1 - 2.5 kWh/m³ Heat consumption: 150 - 260 MJ/m³ Product salinity: < 10 ppm TDS Facility: Telde & Las Palmas - Gran Canaria Multi Effect Distillation Process Source: http://www.ide-tech.com, 2009. Dr.-Ing. Claudia Werner

  10. 2. STATE OF THE ART - Desalination Plants steam steam p 1 > p 2 > p 3 final final T 1 > T 2 > T 3 condenser condenser stage 1 stage 1 stage 2 stage 2 stage 3 stage 3 feed feed steam steam from from CCGT CCGT steam to steam to CCGT CCGT product product condensate condensate sole sole sole H. Müller-Holst: Mehrfacheffekt-Feucht- luftdestillation bei Umgebungsdruck, 2002. Dr.-Ing. Claudia Werner

  11. 2. STATE OF THE ART - Desalination Plants Reverse Osmosis (RO) Typical capacity: 1 - 10,900 m³/d Electric consumption: 4 - 9 kWh/m³ Product salinity: < 500 ppm TDS HP PUMP posttreat- pretreat- ment feed ment product concentrate H. Müller-Holst: Mehrfacheffekt-Feuchtluftdestillation bei Umgebungsdruck, 2002. Dr.-Ing. Claudia Werner

  12. 2. STATE OF THE ART - Hybrid Desalination Plants Increased flexibility in desalination plant management Economic aspects of hybrid desalination plants Modulation of the Power-to-Water-Ratio (PWR) as required MED- MED -RO RO MED- -VC VC MED- -MSF MSF- -VC VC MED- -MSF MSF MED MED MED Thermal Thermal ratio ratio of hybrid MED of hybrid MED plants plants Figure: Hybrid desalination plants based on MED according to the thermal ratio Dr.-Ing. Claudia Werner

  13. 2. STATE OF THE ART - Hybrid Desalination Plants MED/RO in parallel connection MED plant - independent operation of the common intake desalination units (MED/RO) product RO plant - complete sharing of the energy supply, the water pre- and post- treatment as well as the product and sole removal facilities - examples (parallel connection): outfall Jubail (Saudi Arabia) Madina-Yanbu (Saudi Arabia) Source: M. A. Helal, et al.: Optimal design of hybrid RO/MSF desalination plant, 2003. Dr.-Ing. Claudia Werner

  14. 2. STATE OF THE ART - Hybrid Desalination Plants Hybrid desalination plant sole feed product MED Plant RO Plant (seawater) water A2 A3 A1 (1) 66 t/h / 1.1 bar / 157 °C steam requirement (MED) (2) 66 t/h / 1.1 bar / 102 °C steam recirculation (MED) electric power requirement (3) 1.3 kWh/m³ / 6.5 kWh/m³ (MED/RO) Total desalination desalination capacity capacity = 2 x 17,500 m = 2 x 17,500 m³ ³/d /d Total MED MED capacity capacity / RO / RO capacity capacity = 1 = 1 : : 1 1 Dr.-Ing. Claudia Werner

  15. 2. STATE OF THE ART - Electricity Production (750 MW) Source: Kraftwerksschule Essen e.V. CCGT Seabank Power Station - Electric base and mid-load supply Dr.-Ing. Claudia Werner

  16. Electricity Production: CCGT Seabank Power Station CCGT Power Station on natural gas basis Electricity yield: 57.8 % Triple-pressure process and single reheat 253.3 t/h / 110 bar / 550 °C high pressure parameter 52.1 t/h / 30 bar / 320 °C medium pressure parameter 36.2 t/h / 4.8 bar / 235 °C low pressure parameter 247.6 t/h / 28.5 bar / 550 °C reheat parameter Dr.-Ing. Claudia Werner

  17. 3. COMBINATION - Desalination plant/CCGT plant Hybrid desalination plant sole feed product MED Plant RO Plant (seawater) water A2 A1 A3 electric CCGT power plant air power steam gas turbines HRSG turbines flue gas natural gas (1) 66 t/h / 1.1 bar / 157 °C steam requirement (MED) (2) 66 t/h / 1.1 bar / 102 °C steam recirculation (MED) electric power requirement (3) 1.3 kWh/m³ / 6.5 kWh/m³ (MED/RO) Dr.-Ing. Claudia Werner

  18. Interfaces Desalination Plant - CCGT Power Station Interface Desalination Plant Interface Desalination Plant Interfaces Desalination Plant Interfaces Desalination Plant Dr.-Ing. Claudia Werner

  19. 4. RECENT RESEARCH - Aspects of Thermoeconomics � � C = c ⋅ E = c ⋅ m ⋅ e j j j j j j � � � CI OM Z = Z + Z k k k � � 1 1 C C 1 , k , in 1 , k , out 2 2 � � C C 2 , k , in 2 , k , out component k � � n m C C n , k , in m , k , out n m ∑ ∑ ( ) ( ) � � � � CI OM c ⋅ E + Z + Z = c ⋅ E j j k k j j k , in k , out j = 1 j = 1 Source: A. Bejan, et al.: Thermal design and optimization, 1996 Dr.-Ing. Claudia Werner

  20. 4. RECENT RESEARCH - Optimisation Approach according to Ogriseck/Meyer low medium high high A decrease of the capital cost (Z/E D )/(Z/E D ) max in % of these components is medium recommended . . . . An increase of the capital cost of low these components is recommended E D /E D,max in % Dr.-Ing. Claudia Werner

  21. 4. RECENT RESEARCH - Optimisation Approachaccording to Scheffler Direction and extent specifications for the input parameter variations within the optimisation process Example of an isoline . . illustration to describe the nonlinear correlation of the . . input parameters (x 1 , x 2 - cp. figure) Source: E. Scheffler: Statistische Versuchsplanung und -auswertung, 1997. Dr.-Ing. Claudia Werner

  22. 5. SIMULATION/OPTIMISATION PROCESS Combination of the parameters of both subsystems Stationary nominal operation of the cogeneration system SOFTWARE APPLICATIONS: Simulation of the energy supply of the hybrid desalination plant on the basis of GE Energy - GateCycle Thermoeconomic analyses on the basis GATEX, MATLAB and Microsoft Excel Dr.-Ing. Claudia Werner

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend