advanced channel engineering achieving aggressive
play

Advanced Channel Engineering Achieving Aggressive Reduction of V T - PowerPoint PPT Presentation

Advanced Channel Engineering Achieving Aggressive Reduction of V T Variation for Ultra-Low-Power Applications K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren*, P.Ranade*, M.Nakagawa, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae, T.Mori, T.Tsuruta,


  1. Advanced Channel Engineering Achieving Aggressive Reduction of V T Variation for Ultra-Low-Power Applications K.Fujita, Y.Torii, M.Hori, J.Oh, L.Shifren*, P.Ranade*, M.Nakagawa, K.Okabe, T.Miyake, K.Ohkoshi, M.Kuramae, T.Mori, T.Tsuruta, S.Thompson*, T.Ema Fujitsu Semiconductor Ltd. *SuVolta Inc. 1

  2. Outline • Introduction • Transistor Structure • Features of Process Flow and Verification • 65nm 6T-SRAM Evaluation Results • Summary 2

  3. Introduction Power crisis V DD lowering Alternative V T variation solution RDF ETSOI, Tri-gate  complicated 3

  4. Transistor structure Deeply Depleted Channel TM (DDC) Transistor Depleted layer 1 V T setting offset layer 2 3 Screening layer Anti-punch-through layer 4 4

  5. Process flow Well Implant V T / Screen Layer Implant 1 Blanket Si Epi-layer Formation STI Formation Gate Dielectric Formation for HV 2 Gate Dielectric Formation for LV Poly-Si Gate Formation Extension Implant (No Halo) 3 SW Formation S/D Formation 5

  6. TEM of DDC transistor 43.1nm 6

  7. Uniformity of epitaxial silicon Avg. = 27.2nm, 1sigma = 0.25% 7

  8. TEM of low-temperature STI D S 8

  9. W-dependence of V T 0.5 L=0.045  m NMOS 0.4 0.3 0.2 0.1 V T [V] 0 -0.1 -0.2 -0.3 -0.4 PMOS -0.5 0.1 1 10 Gate Width [  m] 9

  10. I-V characteristics L=0.045  m |Vdd|=0.9, 0.1V 1E-02 PMOS NMOS 1E-03 1E-04 1E-05 I d [A/  m] 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 V g [V] 10

  11. Summary of STI • Excellent STI profile • No anomalous W dependence • Nice sub-threshold characteristics No concern about low temp. STI 11

  12. Breakdown of low-temperature GOX 3 L=0.045  m 2 S g =1E-7cm 2 1 0 LN(-LN(1-F)) -1 -2 -3 -4 -5 -6 -7 2 3 4 5 6 Breakdown Voltage [V] 12

  13. NBTI of DDC PMOS 1E+10 T=125ºC 10 years 1E+09 L=0.045  m Lifetime@Id-10% [sec] 1E+08 1E+07 1E+06 1E+05 1E+04 1E+03 1E+02 1E+01 1E+00 1 10 2 3 4 5 Vstress [V] 13

  14. HCI of DDC T=25ºC L=0.045  m 1E+10 PMOS NMOS 1E+09 Lifetime@Id-10% [sec] 1E+08 AC 10 years @ Duty 2% 1E+07 1E+06 1E+05 1E+04 1E+03 1E+02 1E+01 1E+00 -1 -0.5 0 0.5 1 1/V dd [1/V] 14

  15. Summary of GOX • Excellent distribution of breakdown • Long enough life time for NBTI • Long enough life time for HCI No concern about low temp. GOX 15

  16. V T distribution of NMOS 3 3 DDC DDC Cumulative Probability [  ] Cumulative Probability [  ] 2 2 1 1 0 0 -1 -1 -2 Baseline -2 Baseline -3 -3 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Pull-down V T [V] Pass-gate V T [V] 16

  17. V T distribution of PMOS 3 , Baseline Cumulative Probability [  ] , DDC 2 1 0 -1 -2 -3 -0.2 -0.4 -0.6 -0.8 Pull-up V T [V] 17

  18. Summary of across-wafer variation 0.08 Baseline (pull-down) Baseline (pass-gate) Baseline (pull-up)  V T across wafer [V] 0.06 DDC (pull-down) Baseline DDC (pass-gate) DDC (pull-up) 0.04 0.02 DDC 0.00 -0.8 -0.4 0 0.4 0.8 V T [V] 18

  19. V T matching of NMOS 3 3 Baseline Baseline DDC DDC 2 2 Cumulative Probability [  ] Cumulative Probability [  ] 1 1 0 0 -1 -1 -2 -2 -3 -3 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 Pull-down  V T [V] Pass-gate  V T [V] 19

  20. V T matching of PMOS 3 Baseline DDC 2 Cumulative Probability [  ] 1 0 -1 -2 -3 -0.2 -0.1 0 0.1 0.2 Pull-up  V T [V] 20

  21. Summary of V T matching 0.08 Baseline (pull-down) Baseline Baseline (pass-gate) Baseline (pull-up)  V T / SQRT(2) [V] 0.06 DDC (pull-down) DDC (pass-gate) DDC (pull-up) 0.04 0.02 DDC 0.00 -0.8 -0.4 0 0.4 0.8 V T [V] 21

  22. Butterfly curves of 6T-SRAM DDC Baseline 1.0 1.0 0.8 0.8 Node 2 [V] Node 2 [V] 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Node 1 [V] Node 1 [V] 22

  23. SNM distribution 3 Vdd=0.4V 2 Cumulative Probability [  ] 1 0 -1 -2 -3 Baseline -4 DDC -5 -100 0 100 200 SNM [mV] 23

  24. V dd dependence of SNM 10 Baseline 9 DDC 8 SNM (mean/1 σ ) [ σ ] 7 6 5 4 3 2 1 0 0.0 0.2 0.4 0.6 0.8 1.0 V dd [V] 24

  25. V ddmin of 576K bit SRAM array 100 Baseline Yield of SRAM macro [%] DDC 80 60 40 20 0 0.0 0.2 0.4 0.6 0.8 1.0 V dd [V] 25

  26. Summary • Deeply Depleted Channel (DDC) transistor has been introduced to reduce RDF. • Process flow of DDC has been established. • V T matching of SRAM has been reduced to less than half by DDC. • Near to 0.4V operation of SRAM has been achieved. 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend