admissibility and asymptotic preserving scheme
play

Admissibility and asymptotic-preserving scheme . Blachre 1 , R. - PowerPoint PPT Presentation

Admissibility and asymptotic-preserving scheme . Blachre 1 , R. Turpault 2 F 1 Laboratoire de Mathmatiques Jean Leray (LMJL), Universit de Nantes, 2 Institut de Mathmatiques de Bordeaux (IMB), Bordeaux-INP GdR EGRIN, 04/06/2015,


  1. Admissibility and asymptotic-preserving scheme . Blachère 1 , R. Turpault 2 F 1 Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes, 2 Institut de Mathématiques de Bordeaux (IMB), Bordeaux-INP GdR EGRIN, 04/06/2015, Piriac-sur-Mer

  2. Outline General context and examples 1 Development of a new asymptotic preserving FV scheme 2 Conclusion and perspectives 3 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 1/28

  3. Outline General context and examples 1 Development of a new asymptotic preserving FV scheme 2 Conclusion and perspectives 3 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 1/28

  4. Problematic Hyperbolic systems of conservation laws with source terms: ∂ t W + div ( F ( W )) = γ ( W )( R ( W ) − W ) (1) A : set of admissible states, W ∈ A ⊂ R N , F : physical flux, γ > 0: controls the stiffness, R : A → A : smooth function with some compatibility conditions (cf. [Berthon, LeFloch, and Turpault, 2013]). F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 2/28

  5. Problematic Hyperbolic systems of conservation laws with source terms: ∂ t W + div ( F ( W )) = γ ( W )( R ( W ) − W ) (1) Under compatibility conditions on R , when γ t → ∞ , (1) degenerates into a diffusion equation: � � ∂ t w − div D ( w ) ∇ w = 0 (2) w ∈ R , linked to W , D : positive and definite matrix, or positive function. F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 3/28

  6. Examples: isentropic Euler with friction  ∂ t ρ + ∂ x ρ u + ∂ y ρ v = 0  ∂ t ρ u + ∂ x ( ρ u 2 + p ( ρ )) + ∂ y ρ uv , with: p ′ ( ρ ) > 0 , κ > 0 = − κρ u ∂ t ρ v + ∂ x ρ uv + ∂ y ( ρ v 2 + p ( ρ )) = − κρ v  A = { ( ρ, ρ u , ρ v ) T ∈ R 3 /ρ > 0 } Formalism of (1) � ρ u , ρ u 2 + p � T , ρ uv W = ( ρ, ρ u , ρ v ) T F ( W ) = , ρ v 2 + p ρ v , ρ uv R ( W ) = ( ρ, 0 , 0 ) T γ ( W ) = κ Limit diffusion equation � 1 � ∂ t ρ − div κ ∇ p ( ρ ) = 0 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 4/28

  7. Examples: shallow water equations (linear friction)  ∂ t h + ∂ x hu + ∂ y hv = 0  ∂ t hu + ∂ x ( hu 2 + gh 2 / 2 ) + ∂ y huv − κ = h η hu , with: κ > 0 ∂ t hv + ∂ x huv + ∂ y ( hv 2 + gh 2 / 2 ) − κ = h η hv  A = { ( h , hu , hv ) T ∈ R 3 / h > 0 } Formalism of (1) � hu , hu 2 + p � T , huv W = ( h , hu , hv ) T F ( W ) = , hv 2 + p hv , huv R ( W ) = ( h , 0 , 0 ) T γ ( W ) = κ h η Limit diffusion equation � h η κ ∇ gh 2 � ∂ t h − div = 0 2 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 5/28

  8. Examples: shallow water equations (Manning friction)  ∂ t h + ∂ x hu + ∂ y hv = 0  ∂ t hu + ∂ x ( hu 2 + gh 2 / 2 ) + ∂ y huv − κ = h η � h u � hu ∂ t hv + ∂ x huv + ∂ y ( hv 2 + gh 2 / 2 ) − κ = h η � h u � hv  A = { ( h , hu , hv ) T ∈ R 3 / h > 0 } Formalism of (1) � hu , hu 2 + p � T , huv W = ( h , hu , hv ) T F ( W ) = , hv 2 + p hv , huv R ( W ) = ( h , 0 , 0 ) T γ ( W ) = κ h η � h u � Limit equation √ �� � gh η h ∂ t h − div ∇ h = 0 � κ �∇ h � F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 6/28

  9. Aim of an AP scheme Diffusion equation: Model: γ t → ∞ � � ∂ t w − div D ( w ) ∇ w = 0 ∂ t W + div ( F ( W )) = γ ( W )( R ( W ) − W ) consistent: consistent? ∆ t , ∆ x → 0 Numerical scheme Limit scheme γ t → ∞ F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 7/28

  10. Example of a non AP scheme in 1D ∂ t W + ∂ x ( F ( W )) = γ ( W )( R ( W ) − W ) (1) ( ρ u , ρ u 2 + p ) T ( ρ, ρ u ) T = F ( W ) = W ( ρ, 0 ) T γ ( W ) = κ R ( W ) = x i − 1 / 2 x i +1 / 2 x i +1 x i − 1 x i W n + 1 − W n = − 1 i i + γ ( W n i )( R ( W n i ) − W n � � F i + 1 / 2 − F i − 1 / 2 i ) ∆ t ∆ x Limit ρ n + 1 − ρ n 1 i i b i + 1 / 2 ∆ x ( ρ n i + 1 − ρ n i ) − b i − 1 / 2 ∆ x ( ρ n i − ρ n � � = i − 1 ) ∆ t 2 ∆ x 2 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 8/28

  11. State-of-the-art for AP schemes in 1D 1 control of numerical diffusion: telegraph equations: [Gosse and Toscani, 2002], M1 model: [Buet and Després, 2006], [Buet and Cordier, 2007], [Berthon, Charrier, and Dubroca, 2007], . . . Euler with gravity and friction: [Chalons, Coquel, Godlewski, Raviart, and Seguin, 2010], 2 ideas of hydrostatic reconstruction used in ‘well-balanced’ scheme used to have AP properties: Euler with friction: [Bouchut, Ounaissa, and Perthame, 2007], 3 using convergence speed and finite differences: [Aregba-Driollet, Briani, and Natalini, 2012], 4 generalization of Gosse and Toscani: [Berthon and Turpault, 2011], [Berthon, LeFloch, and Turpault, 2013]. F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 9/28

  12. State-of-the-art for AP schemes in 2D Cartesian and admissible meshes = ⇒ 1D unstructured meshes: MPFA based scheme: 1 [Buet, Després, and Franck, 2012], using the diamond scheme (Coudière, Vila, and Villedieu) for the limit 2 scheme: [Berthon, Moebs, Sarazin-Desbois, and Turpault, 2015], SW with Manning-type friction: 3 [Duran, Marche, Turpault, and Berthon, 2015]. F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 10/28

  13. Outline General context and examples 1 Development of a new asymptotic preserving FV scheme 2 Conclusion and perspectives 3 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 1/28

  14. Notations M is an unstructured mesh n K,i 1 constituted of polygonal cells K , x L 2 x L 1 x K is the center of the cell K , i 1 L is the neighbour of K by the x L 5 i 2 interface i , i = K ∩ L , x K i 5 E K are the interfaces of K , x L 3 | e i | is length of the interface i , i 3 i 4 | K | is the area of the cell K , x L 4 n K , i is the normal vector to the x J 2 interface i . F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 11/28

  15. Aim of the development for any 2D unstructured meshes, for any system of conservation laws which could be written as (1), under a ‘hyperbolic’ CFL: stability, preservation of A , preservation of the asymptotic behaviour, � ∆ t � ≤ 1 max b K , i 2 . ∆ x K ∈M i ∈E K F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 12/28

  16. Outline General context and examples 1 Development of a new asymptotic preserving FV scheme 2 Choice of a limit scheme Hyperbolic part Numerical results for the hyperbolic part Scheme for the complete system Results for the complete system Conclusion and perspectives 3 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 1/28

  17. Aim of an AP scheme Diffusion equation: Model: γ t → ∞ � � ∂ t w − div D ( w ) ∇ w = 0 ∂ t W + div ( F ( W )) = γ ( W )( R ( W ) − W ) consistent: consistent? ∆ t , ∆ x → 0 Numerical scheme Limit scheme γ t → ∞ F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 13/28

  18. Choice of the limit scheme FV scheme to discretize diffusion equations: ∂ t w − div ( D ( w ) ∇ w ) = 0 (2) Choice: scheme developed by Droniou and Le Potier conservative and consistent, preserves A , nonlinear. � ν J ( D · ∇ i w K ) · n K , i = K , i ( w )( w J − w K ) J ∈ S K , i S K , i the set of points used for the reconstruction on edges i of cell K ν J K , i ( w ) ≥ 0 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 14/28

  19. Presentation of the DLP scheme x A M K,i x L n K , i n L , i x K M L,i i x B J ∈ S K , i ω J J ∈ S K , i ω J � � M K , i = K , i X J w M K , i = K , i w J J ∈ S L , i ω J J ∈ S L , i ω J M L , i = � L , i X J w M L , i = � L , i w J F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 15/28

  20. Presentation of the DLP scheme Two approximations w MK , i − w K ∇ i w K · n K , i = | KM K , i | w ML , i − w L ∇ i w L · n L , i = | LM L , i | Convex combination: γ K , i + γ L , i = 1, γ K , i ≥ 0, γ L , i ≥ 0 ∇ i w K · n K , i = γ K , i ( w ) ∇ i w K · n K , i + γ L , i ( w ) ∇ i u L · n L , i J ∈ S K , i ν J K , i ( w )( w J − w K ) , with : ν J � = K , i ( w ) ≥ 0 Properties of the DLP scheme consistent with the diffusion equation on any mesh, satisfy the maximum principle. F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 16/28

  21. Outline General context and examples 1 Development of a new asymptotic preserving FV scheme 2 Choice of a limit scheme Hyperbolic part Numerical results for the hyperbolic part Scheme for the complete system Results for the complete system Conclusion and perspectives 3 F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 1/28

  22. Aim of an AP scheme Diffusion equation: Model: γ t → ∞ � � ∂ t w − div D ( w ) ∇ w = 0 ∂ t W + div ( F ( W )) = γ ( W )( R ( W ) − W ) consistent: consistent? ∆ t , ∆ x → 0 Numerical scheme Limit scheme γ t → ∞ F. Blachère (LMJL) GdR EGRIN, 04/06/2015, Piriac-sur-Mer 17/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend