an admissibility and asymptotic preserving scheme for
play

An admissibility and asymptotic-preserving scheme for systems of - PowerPoint PPT Presentation

An admissibility and asymptotic-preserving scheme for systems of conservation laws with source terms on 2D unstructured meshes F. Blachre 1 R. Turpault 1 1 Laboratoire de Mathmatiques Jean Leray, Universit de Nantes SHARK-FV14, 1 st May


  1. An admissibility and asymptotic-preserving scheme for systems of conservation laws with source terms on 2D unstructured meshes F. Blachère 1 R. Turpault 1 1 Laboratoire de Mathématiques Jean Leray, Université de Nantes SHARK-FV14, 1 st May 2014

  2. Outline General context and examples 1 State-of-the-art 2 Development of a new asymptotic preserving FV scheme 3 Conclusion and perspectives 4 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 2 / 31

  3. Outline General context and examples 1 State-of-the-art 2 Development of a new asymptotic preserving FV scheme 3 Conclusion and perspectives 4 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 3 / 31

  4. Problematic Hyperbolic systems of conservation laws with source terms: ∂ t U + div ( F ( U )) = γ ( U )( R ( U ) − U ) (1) A : set of admissible states, U ∈ A ⊂ R N , F : flux, γ > 0: controls the stiffness, R : A → A : smooth function with some compatibility conditions developed by C. Berthon – P.G. Le Floch – R. Turpault [3]. F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 4 / 31

  5. Problematic Hyperbolic systems of conservation laws with source terms: ∂ t U + div ( F ( U )) = γ ( U )( R ( U ) − U ) (1) Under compatibility conditions on R , when γ t → ∞ , (1) degenerates into a smaller parabolic system: � � ∂ t u − div M ( u ) ∇ u = 0 (2) u ∈ R n , linked to U , M : positive and definite matrix. F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 5 / 31

  6. Examples: Telegraph equations � ∂ t v + a ∂ x v = σ ( w − v ) σ ( v − w ) , a , σ > 0 ∂ t w − a ∂ x w = Formalism of (1) U = ( v , w ) T F ( U ) = ( av , − aw ) T R ( U ) = ( w , v ) T γ ( U ) = σ Limit diffusion equation: heat equation on ( v + w ) � a 2 � ∂ t ( v + w ) − ∂ x 2 σ∂ x ( v + w ) = 0 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 6 / 31

  7. Examples: isentropic Euler with friction  ∂ t ρ + ∂ x ρ u + ∂ y ρ v = 0  ∂ t ρ u + ∂ x ( ρ u 2 + p ( ρ )) + ∂ y ρ uv , with: p ′ ( ρ ) > 0 , κ > 0 = − κρ u ∂ t ρ v + ∂ x ρ uv + ∂ y ( ρ v 2 + p ( ρ )) = − κρ v  A = { ( ρ, ρ u , ρ v ) T ∈ R 3 /ρ > 0 } Formalism of (1) � ρ u , ρ u 2 + p � T , ρ uv U = ( ρ, ρ u , ρ v ) T F ( U ) = , ρ v 2 + p ρ v , ρ uv R ( U ) = ( ρ, 0 , 0 ) T γ ( U ) = κ Limit diffusion equation � 1 � ∂ t ρ − div κ ∇ p ( ρ ) = 0 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 7 / 31

  8. Examples: M1 model for radiative transfer c σ e aT 4 − c σ a E  ∂ t E + ∂ x F x + ∂ y F y =  − c σ f F x  ∂ t F x + c 2 ∂ x P xx ( E , F ) + c 2 ∂ y P xy ( E , F ) =  − c σ f F y ∂ t F y + c 2 ∂ x P yx ( E , F ) + c 2 ∂ y P yy ( E , F ) =   c σ a E − c σ e aT 4 ρ C v ∂ t T =  σ = σ ( E , F x , F y , T ) � A = { ( E , F x , F y , T ) ∈ R 4 / E > 0 , T > 0 , F 2 x + F 2 y < cE } Formalism of (1): � F x , � T c 2 P xx , c 2 P yx , 0 U = ( E , F x , F y , T ) T F ( U ) = c 2 P xy , c 2 P yy F y , , 0 R ( U ) γ ( U ) = c σ m ( U ) Limit diffusion equation: equilibrium diffusion equation � c � ∂ t ( ρ C v T + aT 4 ) − div 3 σ r ∇ ( aT 4 ) = 0 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 8 / 31

  9. Other examples Euler coupled with the M1 model − → diffusion system F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 9 / 31

  10. Other examples Euler coupled with the M1 model − → diffusion system Shallow water with friction � ∂ t h + ∂ x hv = 0 − κ ( h ) 2 ghv | hv | , with: κ ( h ) = κ 0 ∂ t hv + ∂ x ( hv 2 + gh 2 h η 2 ) = Limit diffusion equation: non linear parabolic equation � √ � h ∂ x h ∂ t h − ∂ x = 0 κ ( h ) � | ∂ x h | F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 9 / 31

  11. Aim of an AP scheme Diffusion system: Model: γ t → ∞ � � ∂ t U + div ( F ( U )) = γ ( U )( R ( U ) − U ) ∂ t u − div M ( u ) ∇ u = 0 consistent: not consistent: ∆ t , ∆ x → 0 ∆ t , ∆ x → 0 Numerical scheme Limit scheme γ t → ∞ F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 10 / 31

  12. Aim of an AP scheme Diffusion system: Model: γ t → ∞ � � ∂ t U + div ( F ( U )) = γ ( U )( R ( U ) − U ) ∂ t u − div M ( u ) ∇ u = 0 consistent: not consistent: ∆ t , ∆ x → 0 ∆ t , ∆ x → 0 Numerical scheme Limit scheme γ t → ∞ F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 10 / 31

  13. Example of a non AP scheme on Euler with friction in 1D ∂ t U + ∂ x ( F ( U )) = γ ( U )( R ( U ) − U ) ( ρ u , ρ u 2 + p ) T ( ρ, ρ u ) T = F ( U ) = U ( ρ, 0 ) T γ ( U ) = κ R ( U ) = F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 11 / 31

  14. Example of a non AP scheme on Euler with friction in 1D ∂ t U + ∂ x ( F ( U )) = γ ( U )( R ( U ) − U ) ( ρ u , ρ u 2 + p ) T ( ρ, ρ u ) T = F ( U ) = U ( ρ, 0 ) T γ ( U ) = κ R ( U ) = U n + 1 − U n = − 1 i i + γ ( U n i )( R ( U n i ) − U n � � F i + 1 / 2 − F i − 1 / 2 i ) ∆ t ∆ x F i + 1 / 2 : Rusanov flux F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 11 / 31

  15. Example of a non AP scheme on Euler with friction in 1D ∂ t U + ∂ x ( F ( U )) = γ ( U )( R ( U ) − U ) ( ρ u , ρ u 2 + p ) T ( ρ, ρ u ) T = F ( U ) = U ( ρ, 0 ) T γ ( U ) = κ R ( U ) = U n + 1 − U n = − 1 i i + γ ( U n i )( R ( U n i ) − U n � � F i + 1 / 2 − F i − 1 / 2 i ) ∆ t ∆ x F i + 1 / 2 : Rusanov flux Limit ρ n + 1 − ρ n 1 i i b i + 1 / 2 ∆ x ( ρ n i + 1 − ρ n i ) − b i − 1 / 2 ∆ x ( ρ n i − ρ n � � = i − 1 ) 2 ∆ x 2 ∆ t F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 11 / 31

  16. Outline General context and examples 1 State-of-the-art 2 Development of a new asymptotic preserving FV scheme 3 Conclusion and perspectives 4 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 12 / 31

  17. AP in 1D 1 controls the numerical diffusion: telegraph equations: L. Gosse – G. Toscani [11], M1 model: C. Buet – B. Desprès [7], C. Buet – S. Cordier [6] , C. Berthon – P. Charrier – B. Dubroca [2], . . . F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 13 / 31

  18. AP in 1D 1 controls the numerical diffusion: telegraph equations: L. Gosse – G. Toscani [11], M1 model: C. Buet – B. Desprès [7], C. Buet – S. Cordier [6] , C. Berthon – P. Charrier – B. Dubroca [2], . . . 2 ideas of hydrostatic reconstruction used in ‘well-balanced’ scheme: used to have AP properties Euler with friction: F. Bouchut – H. Ounaissa – B. Perthame [5] F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 13 / 31

  19. AP in 1D 1 controls the numerical diffusion: telegraph equations: L. Gosse – G. Toscani [11], M1 model: C. Buet – B. Desprès [7], C. Buet – S. Cordier [6] , C. Berthon – P. Charrier – B. Dubroca [2], . . . 2 ideas of hydrostatic reconstruction used in ‘well-balanced’ scheme: used to have AP properties Euler with friction: F. Bouchut – H. Ounaissa – B. Perthame [5] 3 using convergence speed and finite differences: D. Aregba-Driolet – M. Briani – R. Natalini [1] F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 13 / 31

  20. AP in 1D 1 controls the numerical diffusion: telegraph equations: L. Gosse – G. Toscani [11], M1 model: C. Buet – B. Desprès [7], C. Buet – S. Cordier [6] , C. Berthon – P. Charrier – B. Dubroca [2], . . . 2 ideas of hydrostatic reconstruction used in ‘well-balanced’ scheme: used to have AP properties Euler with friction: F. Bouchut – H. Ounaissa – B. Perthame [5] 3 using convergence speed and finite differences: D. Aregba-Driolet – M. Briani – R. Natalini [1] 4 generalization of L. Gosse – G. Toscani: C. Berthon – P. Le Floch – R. Turpault [3] F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 13 / 31

  21. AP in 2D cartesian and admissible meshes = ⇒ 1D F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 14 / 31

  22. AP in 2D cartesian and admissible meshes = ⇒ 1D unstructured meshes: MPFA based scheme: 1 C. Buet – B. Desprès – E. Frank [8] using the diamond scheme (Y. Coudière – J.P. Vila – P. Villedieu [9]) 2 for the limit scheme: C. Berthon – G. Moebs - C. Sarazin-Desbois – R. Turpault [4] F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 14 / 31

  23. Outline General context and examples 1 State-of-the-art 2 Development of a new asymptotic preserving FV scheme 3 Conclusion and perspectives 4 F. Blachère, R. Turpault (Nantes) AP schemes on 2D unstructured meshes SHARK-FV14, 01/05/14 15 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend