adjoints
play

Adjoints MEC651 denis.sipp@onera.fr Adjoints 1 Outline - - PowerPoint PPT Presentation

Adjoints MEC651 denis.sipp@onera.fr Adjoints 1 Outline - Governing equations - Asymptotic development Order 0 : Base-flow Order 1 : Global modes - Bi-orthogonal basis and adjoint global modes Definition of adjoint


  1. Adjoints MEC651 denis.sipp@onera.fr Adjoints 1

  2. Outline - Governing equations - Asymptotic development οƒ˜ Order πœ— 0 : Base-flow οƒ˜ Order πœ— 1 : Global modes - Bi-orthogonal basis and adjoint global modes οƒ˜ Definition of adjoint global modes οƒ˜ Optimal initial condition οƒ˜ Optimal forcing in stable flow - Adjoint operator οƒ˜ Definition οƒ˜ Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator οƒ˜ Adjoint of linearized advection operator οƒ˜ Adjoint of Stokes operator οƒ˜ Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 2

  3. Governing equations Incompressible Navier-Stokes equations: πœ– 𝑒 𝑣 + π‘£πœ– 𝑦 𝑣 + π‘€πœ– 𝑧 𝑣 = βˆ’πœ– 𝑦 π‘ž + πœ‰ πœ– 𝑦𝑦 𝑣 + πœ– 𝑧𝑧 𝑣 + 𝑔 πœ– 𝑒 𝑀 + π‘£πœ– 𝑦 𝑀 + π‘€πœ– 𝑧 𝑀 = βˆ’πœ– 𝑧 π‘ž + πœ‰ πœ– 𝑦𝑦 𝑀 + πœ– 𝑧𝑧 𝑀 + 𝑕 βˆ’πœ– 𝑦 𝑣 βˆ’ πœ– 𝑧 𝑀 = 0 Can be recast into: β„¬πœ– 𝑒 π‘₯+ 1 2 π’ͺ π‘₯, π‘₯ + β„’π‘₯ = 𝑔 where: π‘₯ = 𝑣 π‘ž 𝑔 = 𝑔 0 ℬ = 1 0 0 , 0 π’ͺ π‘₯ 1 , π‘₯ 2 = 𝑣 1 β‹… 𝛼𝑣 2 + 𝑣 2 β‹… 𝛼𝑣 1 0 βˆ’πœ‰Ξ”() 𝛼() β„’ = βˆ’π›Ό β‹… () 0 Boundary conditions: Dirichlet, Neumann, Mixed MEC651 denis.sipp@onera.fr Adjoints 3

  4. Some properties a) π’ͺ π‘₯ 1 , π‘₯ 2 = π’ͺ π‘₯ 2 , π‘₯ 1 πœ— 2 b) 1 1 2 π’ͺ π‘₯ 0 + πœ—πœ€π‘₯, π‘₯ 0 + πœ—πœ€π‘₯ = 2 π’ͺ π‘₯ 0 , π‘₯ 0 + πœ— π’ͺ π‘₯ 0 , πœ€π‘₯ + 2 π’ͺ πœ€π‘₯, πœ€π‘₯ + β‹― Hessian Jacobian =π’ͺ π‘₯0 πœ€π‘₯ π‘₯ 0 πœ€π‘₯ = π’ͺ π‘₯ 0 , πœ€π‘₯ = πœ€π‘£ β‹… 𝛼𝑣 0 + 𝑣 0 β‹… π›Όπœ€π‘£ c) π’ͺ 0 d) ℬπ‘₯ = ℬ 𝑣 π‘ž = 𝑣 0 e) πœ– 𝑒 𝑣 + 𝑣 β‹… 𝛼𝑣 = βˆ’π›Όπ‘ž + πœ‰π›Ό 2 𝑣 β‡’ βˆ’π›Ό 2 π‘ž = 𝛼 β‹… 𝑣 β‹… 𝛼𝑣 , πœ– π‘œ π‘ž = πœ‰π›Ό 2 𝑣 β‹… π‘œ on solid walls . Hence, p is a function of u and should not be considered as a degree of freedom of the flow. βˆ— 𝑣 2 + 𝑀 1 βˆ— 𝑀 2 𝑒𝑦𝑒𝑧 = ∬ (π‘₯ 1 β‹… ℬπ‘₯ 2 )𝑒𝑦𝑒𝑧 so f) Scalar-product: < π‘₯ 1 , π‘₯ 2 > = ∬ 𝑣 1 that < π‘₯, π‘₯ > is the energy. MEC651 denis.sipp@onera.fr Adjoints 4

  5. Outline - Governing equations - Asymptotic development οƒ˜ Order πœ— 0 : Base-flow οƒ˜ Order πœ— 1 : Global modes - Bi-orthogonal basis and adjoint global modes οƒ˜ Definition of adjoint global modes οƒ˜ Optimal initial condition οƒ˜ Optimal forcing in stable flow - Adjoint operator οƒ˜ Definition οƒ˜ Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator οƒ˜ Adjoint of linearized advection operator οƒ˜ Adjoint of Stokes operator οƒ˜ Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 5

  6. Asymptotic development Solution: π‘₯ 𝑒 = π‘₯ 0 + πœ—π‘₯ 1 𝑒 + β‹― with Ο΅ β‰ͺ 1 Governing equations: β„¬πœ– 𝑒 π‘₯+ 1 2 π’ͺ π‘₯, π‘₯ + β„’π‘₯ = 𝑔 Introduce solution into governing eq:: β„¬πœ– 𝑒 (π‘₯ 0 +πœ—π‘₯ 1 + β‹― )+ 1 2 π’ͺ π‘₯ 0 + πœ—π‘₯ 1 + β‹― , π‘₯ 0 + πœ—π‘₯ 1 + β‹― + β„’(π‘₯ 0 +πœ—π‘₯ 1 + β‹― ) = 𝑔 1 2 π’ͺ π‘₯ 0 , π‘₯ 0 + β„’π‘₯ 0 = 𝑔 at order 𝑃(1) β„¬πœ– 𝑒 π‘₯ 1 + 1 2 [π’ͺ π‘₯ 1 , π‘₯ 0 + π’ͺ π‘₯ 0 , π‘₯ 1 ] + β„’π‘₯ 1 = 0 at order 𝑃(πœ—) β‡’ π’ͺ π‘₯0 π‘₯ 1 π‘₯ 0 π‘₯ 2 + β„’π‘₯ 2 = βˆ’ 1 2 π’ͺ π‘₯ 1 , π‘₯ 1 at order 𝑃(πœ— 2 ) β„¬πœ– 𝑒 π‘₯ 2 +π’ͺ MEC651 denis.sipp@onera.fr Adjoints 6

  7. Oder πœ— 0 : Base-flow Definition: 𝐺 π‘₯ = 1 2 π’ͺ π‘₯, π‘₯ + β„’π‘₯ βˆ’ 𝑔 π‘₯ 𝑒 = π‘₯ 0 + πœ—π‘₯ 1 (𝑒) + β‹― Non-linear equilibrium point : 1 2 π’ͺ π‘₯ 0 , π‘₯ 0 + β„’π‘₯ 0 = 𝑔 π‘₯ π‘₯ 0 How to compute a base-flow ? Newton iteration: 1 2 π’ͺ π‘₯ 0 + πœ€π‘₯ 0 , π‘₯ 0 + πœ€π‘₯ 0 + β„’(π‘₯ 0 +πœ€π‘₯ 0 ) = 𝑔 Linearization: π’ͺ π‘₯ 0 , πœ€π‘₯ 0 + β„’πœ€π‘₯ 0 = 𝑔 βˆ’ 1 2 π’ͺ π‘₯ 0 , π‘₯ 0 βˆ’ β„’π‘₯ 0 βˆ’1 𝑔 βˆ’ 1 β‡’ πœ€π‘₯ 0 = π’ͺ π‘₯ 0 + β„’ 2 π’ͺ π‘₯ 0 , π‘₯ 0 βˆ’ β„’π‘₯ 0 MEC651 denis.sipp@onera.fr Adjoints 7

  8. Oder πœ— 0 : Base-flow The case of cylinder flow 𝑆𝑓 = 47 Streamwise velocity field of base-flow. MEC651 denis.sipp@onera.fr Adjoints 8

  9. Order πœ— 1 : Global modes Definition π‘₯ 𝑒 = π‘₯ 0 + πœ—π‘₯ 1 (𝑒) + β‹― Linear governing equation: β„¬πœ– 𝑒 π‘₯ 1 + π’ͺ π‘₯ 0 π‘₯ 1 + β„’π‘₯ 1 = 0 Solution π‘₯ 1 under the form: π‘₯ 1 = 𝑓 πœ‡π‘’ π‘₯ + c.c This leads to : πœ‡β„¬π‘₯ + π’ͺ π‘₯ 0 + β„’ π‘₯ = 0 Eigenvalue: πœ‡ = 𝜏 + π‘—πœ• Eigenvector: = π‘₯ π‘₯ r + iw 𝑗 Real solution: π‘₯ 1 = 𝑓 πœ‡π‘’ π‘₯ + c.c = 2𝑓 πœπ‘’ (cos πœ•π‘’ π‘₯ 𝑠 βˆ’ sin πœ•π‘’ π‘₯ 𝑗 ) MEC651 denis.sipp@onera.fr Adjoints 9

  10. Order πœ— 1 : Global modes How to compute global modes ? Eigenvalue problem solved with shift-invert strategy: - Power method, easy to find largest magnitude eigenvalues of 𝐡𝑦 = πœ‡π‘¦ . For this, evaluate 𝐡 π‘œ 𝑦 0 To find eigenvalues of 𝐡 closest to zero, search largest magnitude eigenvalues of - 𝐡 βˆ’1 : 𝐡 βˆ’1 𝑦 = πœ‡ βˆ’1 𝑦 . For this, evaluate 𝐡 βˆ’1 π‘œ 𝑦 0 To find eigenvalues of 𝐡 closest to 𝑑 , search largest magnitude eigenvalues of - 𝐡 βˆ’ 𝑑𝐽 βˆ’1 π‘œ 𝑦 0 𝐡 βˆ’ 𝑑𝐽 βˆ’1 : 𝐡 βˆ’ 𝑑𝐽 βˆ’1 𝑦 = πœ‡ βˆ’ 𝑑 βˆ’1 𝑦 . For this, evaluate - Instead of power-method, use Krylov subspaces -> Arnoldi technique - Cost of algorithm = cost of several complex matrix inversions MEC651 denis.sipp@onera.fr Adjoints 10

  11. Order πœ— 1 : Global modes Case of cylinder flow Real part of cross-stream velocity field Spectrum 𝑆𝑓 = 47 Marginal eigenmode MEC651 denis.sipp@onera.fr Adjoints 11

  12. The Ginzburg-Landau eq. We consider the linear Ginzburg-Landau equation πœ– 𝑒 π‘₯ 1 + β„’π‘₯ 1 = 0 where 𝑦 2 β„’ = π‘‰πœ– 𝑦 βˆ’ 𝜈 𝑦 βˆ’ π›Ώπœ– 𝑦𝑦 , 𝜈 𝑦 = π‘—πœ• 0 + 𝜈 0 βˆ’ 𝜈 2 2 . Here 𝑉, 𝛿, πœ• 0 , 𝜈 0 and 𝜈 2 are positive real constants. The state π‘₯(𝑦, 𝑒) is a complex variable on βˆ’βˆž < 𝑦 < +∞ such that |π‘₯| β†’ 0 as 𝑦 β†’ ∞ . In the following, +∞ π‘₯ 𝑏 , π‘₯ 𝑐 = π‘₯ 𝑏 𝑦 βˆ— π‘₯ 𝑐 𝑦 𝑒𝑦 . βˆ’βˆž 1/ What do the different terms in the Ginzburg Landau equation represent? MEC651 denis.sipp@onera.fr Adjoints 12

  13. The Ginzburg-Landau eq. 1 2𝛿 π‘¦βˆ’ πœ“2𝑦2 𝑉 𝜈 2 πœ“ 4 and πœ‚ = 2/ Show that π‘₯ (𝑦) = πœ‚π‘“ 2 with πœ“ = verifies πœ‡π‘₯ + β„’π‘₯ = 0 . 𝑉2 2𝛿 1 1 𝛿2πœ“2 8 𝜌 4 𝑓 What is the eigenvalue πœ‡ associated to this eigenvector? The constant πœ‚ has been selected so that π‘₯ , π‘₯ = 1 . 3/ Show that the flow is unstable if the constant 𝜈 0 is chosen such that: 𝜈 0 > 𝜈 𝑑 , where 𝑉 2 π›Ώπœˆ 2 𝜈 𝑑 = 4𝛿 + 2 . 2𝛿 π‘¦βˆ’ πœ“2𝑦2 𝑉 πœ‡ π‘œ = iπœ• 0 + 𝜈 0 βˆ’ 𝑉 2 π›Ώπœˆ 2 4𝛿 βˆ’ 2π‘œ + 1 2 , π‘₯ π‘œ = πœ‚ π‘œ 𝐼 π‘œ πœ“π‘¦ 𝑓 2 Nota: are all the eigenvalues/eigenvectors of β„’ , 𝐼 π‘œ being Hermite polynomials. MEC651 denis.sipp@onera.fr Adjoints 13

  14. Outline - Governing equations - Asymptotic development οƒ˜ Order πœ— 0 : Base-flow οƒ˜ Order πœ— 1 : Global modes - Bi-orthogonal basis and adjoint global modes οƒ˜ Definition of adjoint global modes οƒ˜ Optimal initial condition οƒ˜ Optimal forcing in stable flow - Adjoint operator οƒ˜ Definition οƒ˜ Adjoint global modes as solutions of adjoint eigen-problem - Adjoint linearized Navier-Stokes operator οƒ˜ Adjoint of linearized advection operator οƒ˜ Adjoint of Stokes operator οƒ˜ Adjoint global modes of cylinder flow MEC651 denis.sipp@onera.fr Adjoints 14

  15. Bi-orthogonal basis and adjoint global modes (1/3) In finite dimension Global mod odes: 𝐡π‘₯ 𝑗 = πœ‡ 𝑗 π‘₯ 𝑗 The eigenvectors π‘₯ 𝑗 form a basis: π‘₯ = 𝛽 𝑗 w i 𝑗 Definition of adjoint global modes: with <> as a given scalar-product (say βˆ— π‘₯ 2 ), there exists for each 𝛽 𝑗 a unique π‘₯ < π‘₯ 1 , π‘₯ 2 > = π‘₯ 1 𝑗 such that 𝛽 𝑗 =< π‘₯ 𝑗 , π‘₯ > for all π‘₯ . The adjoint global modes are the structures π‘₯ 𝑗 . In the following: π‘₯ 𝑗 , π‘₯ 𝑗 = 1 . Properties: οƒ˜ π‘₯ 𝑙 and w j are bi-orthogonal bases: they verify π‘₯ π‘˜ = < π‘₯ 𝑗 , π‘₯ π‘˜ > w i and so 𝑗 βˆ— 𝑋 = 𝐽 ) < π‘₯ 𝑙 , w j > = πœ€ π‘™π‘˜ (in matrix notations 𝑋 1 1 οƒ˜ Cauchy-Lifschitz: 1 = < π‘₯ 𝑗 , w i > ≀< π‘₯ 𝑗 , π‘₯ 𝑗 > 2 < π‘₯ 𝑗 , π‘₯ 𝑗 > 2 1 1 Hence: < π‘₯ 𝑗 , π‘₯ 𝑗 > 2 β‰₯ 1 and cos angle π‘₯ 𝑗 , π‘₯ 𝑗 = 1 <π‘₯ 𝑗 ,π‘₯ 𝑗 > 2 MEC651 denis.sipp@onera.fr Adjoints 15

  16. Bi-orthogonal basis and adjoint global modes (2/3) In finite dimension π‘₯ = (π‘₯ 1 β‹… π‘₯)π‘₯ 1 + (π‘₯ 2 β‹… π‘₯)π‘₯ 2 Def of π‘₯ 1 : π‘₯ 2 π‘₯ 1 β‹… π‘₯ 1 = 1 π‘₯ 1 β‹… π‘₯ 2 = 0 π‘₯ 2 Def of π‘₯ 2 : π‘₯ 2 β‹… π‘₯ 2 = 1 π‘₯ 2 β‹… π‘₯ 1 = 0 π‘₯ 1 π‘₯ 1 βˆ— 𝑋 = 𝐽 𝑋 = W βˆ—βˆ’1 Method 1 : 𝑋 βˆ’1 β‡’ 𝑋 βˆ’1 = 𝑋 π‘Œ β‡’ π‘Œ βˆ— 𝑋 βˆ— 𝑋 = 𝐽 β‡’ π‘Œ = 𝑋 βˆ— 𝑋 = 𝑋 𝑋 βˆ— 𝑋 Method 2 : 𝑋 Method 3 : adjoint global modes MEC651 denis.sipp@onera.fr Adjoints 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend