abiotic stress an overview
play

abiotic stress: an overview N. Ollat, E Marguerit, F. Lecourieux, A. - PowerPoint PPT Presentation

Grapevine adaptation to abiotic stress: an overview N. Ollat, E Marguerit, F. Lecourieux, A. Destrac-Irvine, S. Cookson, V. Lauvergeat, F. Barrieu, Z. Dai, E. Duchne, G. Gambetta, E. Gomes, D. Lecourieux, C. van Leeuwen, T. Simonneau, L.


  1. Grapevine adaptation to abiotic stress: an overview N. Ollat, E Marguerit, F. Lecourieux, A. Destrac-Irvine, S. Cookson, V. Lauvergeat, F. Barrieu, Z. Dai, E. Duchêne, G. Gambetta, E. Gomes, D. Lecourieux, C. van Leeuwen, T. Simonneau, L. Torregrosa, P. Vivin, S. Delrot

  2. A big thank to a great staff

  3. Context Pollution, climate change and reduction of inputs CO 2 and temperature rise Precipitations and drought risks High incertainty More differences between seasons and dry and humid regions http://www.globalcarbonproject.org/ Increase of soil and air pollution : N 2 O, radiation, salinity, nutrient availability

  4. Abiotic stress Any environmental conditions that reduce growth and yield below optimum levels (Cramer et al., 2011) Abiotic stress : Water, temperature, light, • chemical Duration, intensity, time of • occurrence Multistress • Responses of plants: Dynamic • • Complex (reversible or not) Organ specific •

  5. General plant response to abiotic stress Cell wall metabolism • • Water potential gradients Inhibition of cell growth • Inhibition of protein • synthesis/modification epigenetic control of regulation Energy metabolism • Sugar transport and • Cramer et al., 2011 storage

  6. How to define adaptation ? Adaptation to abiotic stress For a crop : to maintain yield and quality under adverse conditions For a perenial crop : to survive over years to extreme adverse conditions Adaptation means both a « process » and a « status » (Cooper and Hammer, 1996)

  7. A process « to adapt » A status « to be adapted » Genotype ( or population ) : a new Genotype : a given combination of favorable combination of favorable alleles alleles ( or changes in the allele frequency escape, avoidance, tolerance, resistance within a population) Escape, avoidance, tolerance, resistance Across generations Short to life cycle of the individual Adaptation sensu stricto Constitutive Regulation = Acclimation (Plasticity of traits) Short term Long term Existing Selective value Functional Developmental diversity Genetic Heritability Reversible Less reversible architecture High WUE Gs = f ( ψ ) Stomatal density

  8. Which targets ? • Identification of mechanisms underlying acclimation and adaptation • Abiotic stress : drought, temperature, mineral deficiencies …. when/where/how ? • Traits of interest for adaptation : final (yield, quality) or intermediate (WUE, K/tartrate, developmental traits as phenology and root system) Some examples

  9. Drought responses in roots PCA for gene expression 3 scion-rootstocks combinations -20 -10 0 10 0.3 CS/CS, CS/RGM, CS/110R G1_20c 110R G1_20b S1_20b S1_20a S1_20c 0.2 Principal component 2 (25%) G1_20a 10 HWD G1_40b G1_40c G1_Ta 0.1 G1_60b S1_40b G1_40a SG_20b S1_40c S1_40a S1_Ta S1_60b S1_60a GG_20b SG_20a Bordo platform G1_60a GG_20a G1_Tc SG_20c MWD S1_60c G1_60c GG_20c S1_Tc 0.0 G1_Tb S1_Tb 0 0.32 SWC (kg H 2 O/kg soil) GG_40a 0.28 LWD 0.24 GG_40b GG_40c SG_40a -0.1 0.20 C SG_40 0.16 CTL LWD 0.12 SG_40b -10 SG_60c MWD GG_60b SG_60a HWD 0.08 SG_60b -3 0 3 6 9 12 15 18 21 24 GG_60a GG_60c -0.2 GG_Tc SG_Tc Days after treatment SG_Tb GG_Ta 4 levels of soil water content GG_Tb SG_Ta RGM during 2 weeks -0.3 -20 Microarrays -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Root tips NimbleGen Principal component 1 (33%) Peccoux, 2011; Barrieu, unpublished

  10. Discriminant responses among genotypes ABA metabolism and regulatory pathway V. riparia & 1 V. riparia x V. rupestris V. vinifera PIP1.3/5-L 8 0.75 ABF2-L RGM o Genotypes are grouped according to their 0.5 Syrah Grenache 4 101-14 background 0.25 PIP2.1-L F2 (28 %) F2 (28 %) 41B Mgt o VviABF2 , VviSnRK2.6 , VviPIP1.1 , VviPIP2.1 and Vvi 0 SnRK2.6-L -14 -10 -6 -2 2 6 10 14 SO4 0 PIP1-3/5 in leaves are discriminant among 161-49 genotypes -4 -0.25 110R o VviSnRK2.6 is the only root discriminant variable -0.5 140Ru V. berlandieri x V. -8 PIP1.1-L SnRK2.6-R Aquaporins rupestris -0.75 -12 F1 (35 %) -1 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 F1 (35 %) Rossdeutsch, 2015; Rossdeutsch et al., 2016 P94, P114, P 164, P180, P181

  11. QTLs mapping for drought responses CS1 RGM3 RGM13 V. vinifera x V. riparia progeny as rootstocks Coefb_070809 CR1 CR2 CR3 CR4 CR5 CR6 CR7 CR8 TTSW_070809 Tr_WD_0809 TTSW_07 TTSW_08 0.0 IRT1i FRD3a 0.0 IRT1f 0.0 VVIB01 0.0 VMC2E7 0.0 IRT1a VMCNG1F1 0.0 VVC06 0.0 VVMD7 0.0 VVC20 VMC2f12 0.2 4.0 VVIr46 IRT1h2 3.1 VMC4f8 5.2 6.7 9.3 VVII52 VVC22 13.0 Fem Male 12.8 13.1 VVIb23 14.5 VMC7H3 VMC4D4 16.0 VMC2G2 14.4 VVIp04 16.5 VVC19 16.1 VVIh02e UDV021 16.2 16.8 VVIb22 15.4 17.5 IRT1c VMC2H9 TTSW_09 23.2 VMC3F3 19.3 VVIc50 20.6 VVIm07 VVIv15a 22.1 VVIb94 VVIQ57 24.3 VVMD36 24.2 VVIt68 22.6 24.8 VMC9F4x 25.9 VVIo55 25.9 VVMD6 26.3 25.6 VVIB59 28.2 VVIh02a 29.5 VMC4H5 25.7 VMC9F4cs CS5 31.7 VMC2C10 VMC2b5a 32.1 33.6 VMC2b5c 33.9 VVIn33 VVIv21 33.9 VMC4G6 27.6 VVIn54 34.8 VrZAG21 35.6 VMC6E10 31.7 IRT1d 35.6 VVIp28 VMC5G1 38.1 VVIn75 37.7 VVC71 37.1 40.2 VVIn31 39.1 VMC2b5b 38.6 VMC16D4 43.5 VMC5G7 43.7 VVIp37 43.4 45.9 VVIn61 43.8 45.8 VVIq06 46.6 VVIm43 VMC9B5 50.9 51.0 VMC1B11 52.6 VVIU20 VVIu20a 52.1 54.6 VVIs21 56.5 56.8 VVIs62 57.5 vvc10 VMC8D11 61.0 VRZAG83 62.4 VVIn40 VMC2E9 62.1 64.3 VMC7G3 VVIb66 65.4 VMC4c6 64.9 Progesterone 5-beta 68.6 69.5 VMC1A12 NTR FTSW40%_ 070809 72.6 VMC9F2 76.3 VMC2H10 79.3 VVIq17 reductase (POR) 81.6 VVIf52 88.2 VMC9D3 87.6 VVIv04 Microsatellite linkage map Predicted protein NTR FTSW40%_ 07 Tr_C_0809-- NTR FTSW20%_ 070809 NTR FTSW20%_ 07 VMC6E10 Coefa_09 Coefb_070809 VMC16D4 NTR FTSW40%_ 09 NTR FTSW60%_ 09 VMC9B5 Coefb_09 Lipoxygenase (LOX) Bordo platform VMC2E9 Transpiration • VMC4C6 Water use efficiency • D4H, NCED Glutathione S transferase Responses to SWC • Alkanal reductase Marguerit et al., 2009; 2012 Class IV Chitinase TTSW • Unnamed protein

  12. QTLs mapping for gas exchanges regulation under drought Transpiration Conductance Syrah x Grenache progeny Water potential gradients PHENOARCH platform PHENOARCH platform Transpiration • • Plant conductance Δ water potential • Water use efficiency • Coupel-Ledru et al., 2014; 2016; 2017

  13. Temperature and phenology Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmax i -Tmin i )/2 Vitadapt From i = 60 to n. ( GFV model, Parker et al., 2011) Heat Sum = Σ ( Tmax i -Tbase ) From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010) 262 degree-days 21 days Van Leeuwen and Destrac, 2017

  14. Temperature and phenology Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmax i -Tmin i )/2 Vitadapt From i = 60 to n. ( GFV model, Parker et al., 2011) Heat Sum = Σ ( Tmax i -Tbase ) From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010) 229 degree-days 14 days Van Leeuwen and Destrac, 2017

  15. Temperature and phenology Developmental rate is related to temperature > thermal time Heat Sum = Σ (Tmax i -Tmin i )/2 Vitadapt From i = 60 to n. ( GFV model, Parker et al., 2011) Heat Sum = Σ ( Tmax i -Tbase ) From i = 45 to n. Tbase = 2, 10, 6°C (Duchêne et al., 2010) 506 degree-days 21 days CA P59, P83, P91, P154 Van Leeuwen and Destrac, 2017

  16. Temperature and phenology R I G W 0 4 R I G W 1 9 R I G W 0 7 R I G W 1 4 R I G W 1 6 R I G W 1 8 V V I n 5 2 V M C 2 a 3 0 . 0 0 . 0 V V I r 4 6 V V I p 1 7 a V V I p 0 5 _ G W 0 . 0 0 . 0 0 . 0 V V M D 7 0 . 0 V V I p 0 5 _ R I 0 . 8 V r Z A G 6 2 Riesling x 3 . 2 4 . 3 V M C 5 h 1 1 9 . 4 V V I v 1 6 7 . 7 V M C 9 c 1 V V I t 6 5 1 2 . 1 Gewurtztraminer 1 0 . 2 V V I q 3 2 1 2 . 7 V V C 0 5 V M C 3 g 1 1 1 5 . 9 V V M D 6 1 8 . 3 population V M C 4 d 4 1 2 . 6 V V C 3 4 1 7 . 9 V M C 5 H 5 V M C 7 h 3 1 8 . 8 1 4 . 6 U D V 0 5 2 2 4 . 3 V V I p 1 1 1 8 . 8 Length of periods in 7 . 7 V M C 2 c 3 V V I v 3 6 . 2 3 0 . 0 2 5 . 2 V V I v 7 0 DD VvFUL-L GST1 V V I p 3 1 2 6 . 6 VvPYL VvSEP1 V V I m 0 3 2 7 . 1 GST2 V V M D 3 7 4 4 . 9 V M C 9 a 3 . 1 4 0 . 3 0 . 8 V V M D 2 4 V V M D 5 4 6 . 3 VvCOL2 4 9 . 2 V V I m 1 0 VvHB10 VvFLC2 V M C 4 b 7 - 2 5 3 . 7 V r Z A G 2 1 3 7 . 2 VvWRKY3 V V I u 0 4 5 6 . 6 VvFT 2 . 5 V V I n 6 4 GST3 VvSUT2-3 V V I p 3 4 V V I p 2 6 4 1 . 7 VMC8d11 5 . 5 5 6 . 7 Id1 V V I n 7 5 GST4 4 3 . 4 V V I v 3 3 4 2 . 8 V V I n 9 4 9 . 0 VvSUT2-2 SGR7/SR VvSVP1 LOBD39 VvMSA VvABF7 7 4 . 7 V V M D 1 7 V M C 7 b 1 5 1 . 2 V V M D 3 2 5 3 . 3 5 4 . 4 V V I p 3 7 V V I n 1 6 8 3 . 1 7 8 . 8 V V I p 7 5 9 1 . 2 V M C 7 f 2 8 7 . 7 U D V 0 1 6 . 2 9 9 . 1 V V I m 3 3 6 7 . 8 V M C 6 g 1 0 9 2 . 1 V V I n 5 6 Budburst Flowering Véraison O25, O39, O40, O42, P3, P147, P153 Duchêne et al, 2012

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend