a user s guide to riemannian newton type methods on
play

A Users Guide to Riemannian Newton-Type Methods on Manifolds Felipe - PowerPoint PPT Presentation

Motivation Outline A Users Guide to Riemannian Newton-Type Methods on Manifolds Felipe lvarez Departamento de Ingeniera Matemtica Centro de Modelamiento Matemtico (CNRS UMI 2807) Universidad de Chile In collaboration with: J.


  1. Motivation Outline A User’s Guide to Riemannian Newton-Type Methods on Manifolds Felipe Álvarez Departamento de Ingeniería Matemática Centro de Modelamiento Matemático (CNRS UMI 2807) Universidad de Chile In collaboration with: J. Bolte, J. Munier, J. López Sixièmes Journées Franco-Chiliennes d’Optimisation Université du Sud Toulon-Var Mai 19-21, 2008 http://www.dim.uchile.cl/~falvarez Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 1 / 23

  2. Motivation Outline Motivation: Nonlinear equations in a manifold Goal: find p ∗ ∈ M satisfying F ( p ∗ ) = 0 ∈ T p ∗ M M is a connected and n -dimensional differentiable manifold. T p M ≃ R n is the tangent space of M at p : If c ( t ) is a curve passing through p at t = 0 then ˙ c ( 0 ) ∈ T p M . F : M → TM is a continuously differentiable vector field: M ∋ p �→ F ( p ) ∈ T p M Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 2 / 23

  3. Motivation Outline Motivation: Nonlinear equations in a manifold Goal: find p ∗ ∈ M satisfying F ( p ∗ ) = 0 ∈ T p ∗ M M is a connected and n -dimensional differentiable manifold. T p M ≃ R n is the tangent space of M at p : If c ( t ) is a curve passing through p at t = 0 then ˙ c ( 0 ) ∈ T p M . F : M → TM is a continuously differentiable vector field: M ∋ p �→ F ( p ) ∈ T p M Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 2 / 23

  4. Motivation Outline Motivation: Nonlinear equations in a manifold Goal: find p ∗ ∈ M satisfying F ( p ∗ ) = 0 ∈ T p ∗ M M is a connected and n -dimensional differentiable manifold. T p M ≃ R n is the tangent space of M at p : If c ( t ) is a curve passing through p at t = 0 then ˙ c ( 0 ) ∈ T p M . F : M → TM is a continuously differentiable vector field: M ∋ p �→ F ( p ) ∈ T p M Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 2 / 23

  5. Motivation Outline Motivation: Nonlinear equations in a manifold Goal: find p ∗ ∈ M satisfying F ( p ∗ ) = 0 ∈ T p ∗ M M is a connected and n -dimensional differentiable manifold. T p M ≃ R n is the tangent space of M at p : If c ( t ) is a curve passing through p at t = 0 then ˙ c ( 0 ) ∈ T p M . F : M → TM is a continuously differentiable vector field: M ∋ p �→ F ( p ) ∈ T p M Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 2 / 23

  6. Motivation Outline Example 1: Rayleigh’s quotient on the sphere M = S n = { x ∈ R n + 1 | x T x = 1 } (unit sphere in R n + 1 ). T x M = { v ∈ R n + 1 | x T v = 0 } . F ( x ) = Ax − q ( x ) x with � A ∈ R n × n being symmetric and positive definite. � q ( x ) = x T Ax . x T F ( x ) = 0 ⇒ F ( x ) ∈ T x M . F ( x ∗ ) = 0 iff x ∗ is an eigenvector of A with q ( x ∗ ) the corresponding eigenvalue. Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 3 / 23

  7. Motivation Outline Example 2: Stiefel manifold M = S n , k = { Y ∈ R n × k | Y T Y = I k } . T Y S n , k = { ∆ ∈ R n × k | ∆ T Y + Y T ∆ = 0 } . If k = 1 then S n , 1 = S n − 1 . If k = n then S n , n = O n the orthogonal group. T I n O n = { ∆ ∈ R n × n | ∆ T = − ∆ } . dim S n , k = nk − 1 2 k ( k + 1 ) . F ( Y ) = AY − YY T AY F ( Y ∗ ) = 0 iff the columns of Y ∗ are eigenvectors of A . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 4 / 23

  8. Motivation Outline Example 2: Stiefel manifold M = S n , k = { Y ∈ R n × k | Y T Y = I k } . T Y S n , k = { ∆ ∈ R n × k | ∆ T Y + Y T ∆ = 0 } . If k = 1 then S n , 1 = S n − 1 . If k = n then S n , n = O n the orthogonal group. T I n O n = { ∆ ∈ R n × n | ∆ T = − ∆ } . dim S n , k = nk − 1 2 k ( k + 1 ) . F ( Y ) = AY − YY T AY F ( Y ∗ ) = 0 iff the columns of Y ∗ are eigenvectors of A . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 4 / 23

  9. Motivation Outline Example 2: Stiefel manifold M = S n , k = { Y ∈ R n × k | Y T Y = I k } . T Y S n , k = { ∆ ∈ R n × k | ∆ T Y + Y T ∆ = 0 } . If k = 1 then S n , 1 = S n − 1 . If k = n then S n , n = O n the orthogonal group. T I n O n = { ∆ ∈ R n × n | ∆ T = − ∆ } . dim S n , k = nk − 1 2 k ( k + 1 ) . F ( Y ) = AY − YY T AY F ( Y ∗ ) = 0 iff the columns of Y ∗ are eigenvectors of A . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 4 / 23

  10. Motivation Outline Example 2: Stiefel manifold M = S n , k = { Y ∈ R n × k | Y T Y = I k } . T Y S n , k = { ∆ ∈ R n × k | ∆ T Y + Y T ∆ = 0 } . If k = 1 then S n , 1 = S n − 1 . If k = n then S n , n = O n the orthogonal group. T I n O n = { ∆ ∈ R n × n | ∆ T = − ∆ } . dim S n , k = nk − 1 2 k ( k + 1 ) . F ( Y ) = AY − YY T AY F ( Y ∗ ) = 0 iff the columns of Y ∗ are eigenvectors of A . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 4 / 23

  11. Motivation Outline Solving nonlinear equations: Euclidean case Goal: find p ∗ ∈ Ω such that F ( p ∗ ) = 0 ∈ R n , where Ω is open and F : Ω ⊂ R n → R n is a C 1 vector field. Newton’s method: F ( p k ) + F ′ ( p k )( p k + 1 − p k ) = 0 . 10 8 6 4 2 0 p k −2 p k+1 p* −4 −1 −0.5 0 0.5 1 1.5 2 2.5 Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 5 / 23

  12. Motivation Outline Outline Abstract differential geometry setting for R-Newton 1 2 Other explicit examples Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 6 / 23

  13. Abstract differential geometry setting for R-Newton Other explicit examples Outline Abstract differential geometry setting for R-Newton 1 2 Other explicit examples Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 7 / 23

  14. Abstract differential geometry setting for R-Newton Other explicit examples Metric framework M is endowed with a Riemannian metric g : � v � 2 p = g ( p )( v , v ) for v ∈ T p M . Riemannian distance d : M × M → [ 0 , + ∞ ) : � b d ( p , q ) = inf { a � ˙ c ( t ) � c ( t ) dt | c : [ a , b ] → M , c ( a ) = p , c ( b ) = q } Assumption: ( M , d ) is a complete metric space. Covariant derivative: F ′ ( p ) v := ∇ v F ( p ) = ( ∇ Y F )( p ) , v ∈ T p M , where � Y is any vector field on M satisfying v = Y ( p ) . � ∇ is the Riemannian (or Levi-Civita) connection on ( M , g ) . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 8 / 23

  15. Abstract differential geometry setting for R-Newton Other explicit examples Metric framework M is endowed with a Riemannian metric g : � v � 2 p = g ( p )( v , v ) for v ∈ T p M . Riemannian distance d : M × M → [ 0 , + ∞ ) : � b d ( p , q ) = inf { a � ˙ c ( t ) � c ( t ) dt | c : [ a , b ] → M , c ( a ) = p , c ( b ) = q } Assumption: ( M , d ) is a complete metric space. Covariant derivative: F ′ ( p ) v := ∇ v F ( p ) = ( ∇ Y F )( p ) , v ∈ T p M , where � Y is any vector field on M satisfying v = Y ( p ) . � ∇ is the Riemannian (or Levi-Civita) connection on ( M , g ) . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 8 / 23

  16. Abstract differential geometry setting for R-Newton Other explicit examples Metric framework M is endowed with a Riemannian metric g : � v � 2 p = g ( p )( v , v ) for v ∈ T p M . Riemannian distance d : M × M → [ 0 , + ∞ ) : � b d ( p , q ) = inf { a � ˙ c ( t ) � c ( t ) dt | c : [ a , b ] → M , c ( a ) = p , c ( b ) = q } Assumption: ( M , d ) is a complete metric space. Covariant derivative: F ′ ( p ) v := ∇ v F ( p ) = ( ∇ Y F )( p ) , v ∈ T p M , where � Y is any vector field on M satisfying v = Y ( p ) . � ∇ is the Riemannian (or Levi-Civita) connection on ( M , g ) . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 8 / 23

  17. Abstract differential geometry setting for R-Newton Other explicit examples Metric framework M is endowed with a Riemannian metric g : � v � 2 p = g ( p )( v , v ) for v ∈ T p M . Riemannian distance d : M × M → [ 0 , + ∞ ) : � b d ( p , q ) = inf { a � ˙ c ( t ) � c ( t ) dt | c : [ a , b ] → M , c ( a ) = p , c ( b ) = q } Assumption: ( M , d ) is a complete metric space. Covariant derivative: F ′ ( p ) v := ∇ v F ( p ) = ( ∇ Y F )( p ) , v ∈ T p M , where � Y is any vector field on M satisfying v = Y ( p ) . � ∇ is the Riemannian (or Levi-Civita) connection on ( M , g ) . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 8 / 23

  18. Abstract differential geometry setting for R-Newton Other explicit examples Metric framework M is endowed with a Riemannian metric g : � v � 2 p = g ( p )( v , v ) for v ∈ T p M . Riemannian distance d : M × M → [ 0 , + ∞ ) : � b d ( p , q ) = inf { a � ˙ c ( t ) � c ( t ) dt | c : [ a , b ] → M , c ( a ) = p , c ( b ) = q } Assumption: ( M , d ) is a complete metric space. Covariant derivative: F ′ ( p ) v := ∇ v F ( p ) = ( ∇ Y F )( p ) , v ∈ T p M , where � Y is any vector field on M satisfying v = Y ( p ) . � ∇ is the Riemannian (or Levi-Civita) connection on ( M , g ) . Felipe Álvarez (DIM) A User’s Guide to Riemannian Newton-Type Methods 8 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend