a unified framework for complementarity in quantum
play

A unified framework for complementarity in quantum information - PowerPoint PPT Presentation

Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels A unified framework for complementarity in quantum information Jason Crann with D. Kribs, R. Levene and I. Todorov. Carleton University and Universit Lille 1


  1. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels A unified framework for complementarity in quantum information Jason Crann with D. Kribs, R. Levene and I. Todorov. Carleton University and Université Lille 1 Recent Developments in Quantum Groups Operator Algebras and Applications February 7 th , 2015

  2. ✝ q ✝ ♣ q ✏ ♣ ❜ q♣ ♣ ❜ ⑤ ②① ⑤q ♣ q Ñ ♣ q ✝ ✝ q ✝ ♣ q ✏ ♣ ❜ q♣ ♣ ❜ ⑤ ②① ⑤q ✝ ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Open system dynamics Schrödinger picture : Quantum states evolve under completely positive trace preserving (CPTP) maps E ✝ : T ♣ H S q Ñ T ♣ H S q .

  3. ♣ q Ñ ♣ q ✝ ✝ q ✝ ♣ q ✏ ♣ ❜ q♣ ♣ ❜ ⑤ ②① ⑤q ✝ ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Open system dynamics Schrödinger picture : Quantum states evolve under completely positive trace preserving (CPTP) maps E ✝ : T ♣ H S q Ñ T ♣ H S q . By Stinespring’s dilation theorem: E ✝ ♣ ρ q ✏ ♣ id ❜ tr E q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q .

  4. ✝ ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Open system dynamics Schrödinger picture : Quantum states evolve under completely positive trace preserving (CPTP) maps E ✝ : T ♣ H S q Ñ T ♣ H S q . By Stinespring’s dilation theorem: E ✝ ♣ ρ q ✏ ♣ id ❜ tr E q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q . Complementary channel : E c ✝ : T ♣ H S q Ñ T ♣ H E q : E c ✝ ♣ ρ q ✏ ♣ tr S ❜ id q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q .

  5. ✝ ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Open system dynamics Schrödinger picture : Quantum states evolve under completely positive trace preserving (CPTP) maps E ✝ : T ♣ H S q Ñ T ♣ H S q . By Stinespring’s dilation theorem: E ✝ ♣ ρ q ✏ ♣ id ❜ tr E q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q . Complementary channel : E c ✝ : T ♣ H S q Ñ T ♣ H E q : E c ✝ ♣ ρ q ✏ ♣ tr S ❜ id q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q . Note : Complement is defined up to partial isometry.

  6. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Open system dynamics Schrödinger picture : Quantum states evolve under completely positive trace preserving (CPTP) maps E ✝ : T ♣ H S q Ñ T ♣ H S q . By Stinespring’s dilation theorem: E ✝ ♣ ρ q ✏ ♣ id ❜ tr E q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q . Complementary channel : E c ✝ : T ♣ H S q Ñ T ♣ H E q : E c ✝ ♣ ρ q ✏ ♣ tr S ❜ id q♣ U ♣ ρ ❜ ⑤ ψ E ②① ψ E ⑤q U ✝ q . Note : Complement is defined up to partial isometry. E ✝ and E c ✝ have dual properties

  7. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Correctable subsystems [ Kribs–Laflamme–Poulin ’05 ] If H S ✏ ♣ H A ❜ H B q , then B is a correctable subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map R ✝ : T ♣ H S q Ñ T ♣ H S q such that R ✝ ✆ E ✝ ✏ F ✝ ❜ id B for some CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q .

  8. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Correctable subsystems [ Kribs–Laflamme–Poulin ’05 ] If H S ✏ ♣ H A ❜ H B q , then B is a correctable subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map R ✝ : T ♣ H S q Ñ T ♣ H S q such that R ✝ ✆ E ✝ ✏ F ✝ ❜ id B for some CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q . IDEA : Information stored in B is recoverable after the channel.

  9. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels ε -Correctable subsystems If H S ✏ ♣ H A ❜ H B q , then B is an ε -correctable subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map R ✝ : T ♣ H S q Ñ T ♣ H S q such that �R ✝ ✆ E ✝ ✁ F ✝ ❜ id B � cb ➔ ε for some CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q . IDEA : Information stored in B is ε -recoverable after the channel.

  10. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Private subsystems [ Bartlett–Rudolph–Spekkens ’04 ] If H S ✏ ♣ H A ❜ H B q , then B is a private subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q such that E ✝ ✏ F ✝ ❜ tr B .

  11. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Private subsystems [ Bartlett–Rudolph–Spekkens ’04 ] If H S ✏ ♣ H A ❜ H B q , then B is a private subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q such that E ✝ ✏ F ✝ ❜ tr B . IDEA : Information stored in B completely decoheres.

  12. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels ε -Private subsystems If H S ✏ ♣ H A ❜ H B q , then B is an ε -private subsystem for E ✝ : T ♣ H S q Ñ T ♣ H S q if ❉ a CPTP map F ✝ : T ♣ H A q Ñ T ♣ H S q such that �E ✝ ✁ F ✝ ❜ tr B � cb ➔ ε. IDEA : Information stored in B ε -decoheres.

  13. ❄ ✝ ô ✝ ❄ ✝ ô ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Complementarity theorem Theorem (Kretschmann–Kribs–Spekkens ’08) Let H S ✏ ♣ H A ❜ H B q be finite-dimensional and E ✝ : T ♣ H S q Ñ T ♣ H S q be CPTP. Then

  14. ❄ ✝ ô ✝ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Complementarity theorem Theorem (Kretschmann–Kribs–Spekkens ’08) Let H S ✏ ♣ H A ❜ H B q be finite-dimensional and E ✝ : T ♣ H S q Ñ T ♣ H S q be CPTP. Then B is ε -correctable for E ✝ ô B is 2 ❄ ε -private for any E c ✝ .

  15. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Complementarity theorem Theorem (Kretschmann–Kribs–Spekkens ’08) Let H S ✏ ♣ H A ❜ H B q be finite-dimensional and E ✝ : T ♣ H S q Ñ T ♣ H S q be CPTP. Then B is ε -correctable for E ✝ ô B is 2 ❄ ε -private for any E c ✝ . B is ε -private for E ✝ ô B is 2 ❄ ε -correctable for any E c ✝ .

  16. ✏ ♣ ❜ q ♣ q Ñ ♣ q ✝ ❉ ♣ q Ñ ♣ q ✆ ♣ q ✏ ♣ ❜ q P ♣ q Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Heisenberg Picture Observables evolve under normal unital completely positive (NUCP) maps: E : B ♣ H S q Ñ B ♣ H S q .

  17. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Heisenberg Picture Observables evolve under normal unital completely positive (NUCP) maps: E : B ♣ H S q Ñ B ♣ H S q . If H S ✏ ♣ H A ❜ H B q , then B is correctable for E ✝ : T ♣ H S q Ñ T ♣ H S q iff ❉ a NUCP map R : B ♣ H B q Ñ B ♣ H S q such that E ✆ R ♣ b q ✏ ♣ 1 ❜ b q for all b P B ♣ H B q .

  18. ✏ ❜ ♣ q ✕ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Correctable subalgebras [ Bény–Kempf–Kribs ’07 ] A von Neumann subalgebra N ❸ B ♣ H S q is ε -correctable for E : B ♣ H S q Ñ B ♣ H S q if ❉ a NUCP map R : N Ñ B ♣ H S q such that �E ✆ R ✁ id N � cb ➔ ε.

  19. ✕ Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Correctable subalgebras [ Bény–Kempf–Kribs ’07 ] A von Neumann subalgebra N ❸ B ♣ H S q is ε -correctable for E : B ♣ H S q Ñ B ♣ H S q if ❉ a NUCP map R : N Ñ B ♣ H S q such that �E ✆ R ✁ id N � cb ➔ ε. Note : If N is a type I factor, then N ✏ 1 ❜ B ♣ H q .

  20. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Correctable subalgebras [ Bény–Kempf–Kribs ’07 ] A von Neumann subalgebra N ❸ B ♣ H S q is ε -correctable for E : B ♣ H S q Ñ B ♣ H S q if ❉ a NUCP map R : N Ñ B ♣ H S q such that �E ✆ R ✁ id N � cb ➔ ε. Note : If N is a type I factor, then N ✏ 1 ❜ B ♣ H q . Correctable subsystems ✕ Correctable type I factors

  21. Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Duality picture Correctable subalgebras ???? ➈ Correctable subsystems Ø Private subsystems

  22. ❸ ♣ q ❸ ♣ q ❸ ♣ q Ñ ♣ q Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Quantum channels Heisenberg : Observables on the output H S evolve to observables on the input H S . E : B ♣ H S q Ñ B ♣ H S q

  23. ❸ ♣ q ❸ ♣ q Ñ ♣ q Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Quantum channels Heisenberg : Observables on the output H S evolve to observables on the input H S . E : B ♣ H S q Ñ B ♣ H S q Subset S ❸ B ♣ H S q observables

  24. ❸ ♣ q Ñ ♣ q Introduction Private Subalgebras & Complementarity Examples: Gaussian Channels Quantum channels Heisenberg : Observables on the output H S evolve to observables on the input H S . E : B ♣ H S q Ñ B ♣ H S q Subset S ❸ B ♣ H S q observables whose spectral projections lie in M ❸ B ♣ H S q .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend