13 02 12 role of complementarity on entanglement
play

13/02/12 Role of complementarity on Entanglement detection Ryo - PowerPoint PPT Presentation

13/02/12 Role of complementarity on Entanglement detection Ryo Namiki Quantum optics group, Kyoto University Quantum entanglement A B Inseparability (entangled state) Form of density operators AB i p i Ai


  1. 13/02/12 Role of complementarity on Entanglement detection Ryo Namiki Quantum optics group, Kyoto University 求職中

  2. ● Quantum entanglement A B ● Inseparability (entangled state) Form of density operators  AB ≠ ∑ i p i  Ai ⊗ Bi LOCC: e.g. , ∣  〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B 〈 i ∣ j 〉 = i , j Local quantum Operation & ● Entanglement measure (LOCC monotone) Classical Communication Quantify the strength of quantum correlation A B time M  AB ≥ M  L LOCC  AB  A i 1 † B i 2 † A i 3 † B i 4 B i 2  i 1  † L LOCC  AB =∑ i B i 4 A i 3 B i 2 A i 1  AB A i 1 =∑ i  K Ai ⊗ L Bi  AB  K Ai ⊗ L Bi  † A i 3  i 2, i 1  B i 4  i 3, i 2, i 1  Guhne&Toth, Phys. Rep. 474, 1 (2009) Horodeckis, Rev. Mod. Phys. 81, 865, (2009)

  3. Basic concepts on Quantum mechanics  p  2 V C : =∥[ x , p ]∥/ 2 4 ● Canonical uncertainty relation  x  2  p  2  C 2 3 Trade off 2 〈  2  x 〉〈  2  p 〉 ≥ 1 / 4 ∥[ x , p ]∥ 1 unphysical  x  2 4 U ● Quantum entanglement 0 1 2 3  AB ≠ ∑ i p i  Ai ⊗ Bi - Inseparability A B 〈 i ∣ j 〉 = i , j e.g. , ∣  〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B - Entanglement measure M  AB ≥ M  L LOCC  AB 

  4. Einstein-Podolsky-Rosen (EPR) state A B ∣  〉 AB : =∫ dx ∣ x 〉 A ∣ x 〉 B /  2  ∣ x 1 〉 ........... ∣ x 1 〉 ∣ x 2 〉 ........... ∣ x 2 〉 Simultaneous eigenstate of ∣ x 3 〉 ........... ∣ x 3 〉 p A    p B ,  x A −  x B ⋮ Positions are correlated and ∣ p 1 〉 ........... ∣ − p 1 〉 Momentums are anti-correlated ∣ p 2 〉 ........... ∣ − p 2 〉 〈  2   p B  〉 ~ 0 ; 〈  2   x B  〉 ~ 0 ∣ p 3 〉 ........... ∣ − p 3 〉 p A   x A −  ⋮  p  2 V V 4 4 EPR paradox! A B Uncertainty relation! 3 3 UV  1  x  2  p  2  C 2 u 2  v 2 = 1 2 2 U = 〈  2  u  x B  〉 / C x A − v  V = 〈  2  u  p B  〉 / C p A  v  1 1  x  2 4 U 4 U 0 1 2 3 0 1 2 3

  5. Entanglement detection via EPR paradox Product criterion for entanglement C : =∣[ x , p ]∣/ 2 〈  2  u  x B  〉〈  2  u  p B  〉  C 2 x A − v  p A  v  〈  2  u  x B  〉〈  2  u  p B  〉  C 2 x A − v  p A − v  Uncertainty relation! V. Giovannetti et al., Phys. Rev. A 67, 022320 (2003) Stronger Correlation beyond the uncertainty limit V EPR paradox! 4 ● Quantum entanglement UV  1 3  AB ≠ ∑ i p i  Ai ⊗ Bi u 2  v 2 = 1 2 U = 〈  2  u  x B  〉 / C x A − v  V = 〈  2  u  p B  〉 / C p A  v  Give a constraint on the form 1 Of the density operator 4 U 0 1 2 3

  6. Complementary correlations for entanglement Z ∣ 0 〉 = ∣ 0 〉 X ∣  0 〉 = ∣  0 〉 ● Maximally entangled state (of two qubits) Z ∣ 1 〉 =− ∣ 1 〉 X ∣  1 〉 =− ∣  1 〉 ∣  0 〉 = ∣ 00 〉  ∣ 11 〉 /  2 0 〉 = ∣ 0 〉  ∣ 1 〉 /  2 ∣  = ∣  0 〉  ∣  1 〉 /  2 0  1  ∣  1 〉 = ∣ 0 〉 − ∣ 1 〉 /  2 Simultaneous eigenstate of product Pauli operators: Z : = [ 0 − 1 ] 1 0 X A   Z A    X B , Z B Strong correlations on the conjugate variables X : = [ 0 ] 0 1  〈  X B 〉 = 0 X A −  〈  Z B 〉 = 0 1 Z A −  An average correlation of the Z-basis bits and X-basis bits exceeds 75% 〈  Z B 〉  1 X A  X B   Z A  the state is entangled:  AB ≠ ∑ i p i  Ai ⊗ Bi

  7. Uncertainty relations and entanglement A B 〈  2  u  x B  〉〈  2  u  p B  〉  C 2 x A − v  p A  v  Continuous-variable systems Continuous-variable entanglement C : =∣[ x , p ]∣/ 2 〈  Z B 〉  1 X A  X B   Z A  Pair of two-levels systems Qubit-Qubit entanglement Pair of d-level systems Strength of measured correlations Uncertainty Qudit-Qudit entanglement relations? ● Fourier-based uncertainty relations ● Generalized Pauli-operators on d-level systems R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)

  8. Complementary elements and Uncertainty Relations Conjugate bases: on d- level system Two Fourier distributions Cannot have sharp peaks simultaneously Trade-off Never coexist on the unit circle (At least one is inside) Two (generalized) Pauli operators 〈 Z 〉 = ∑ j P  j  e i  j

  9. Complementary elements and Uncertainty Relations Conjugate bases: on d- level system Discrete Fourier-based Uncertainty relations

  10. Theorem. The state is entangled if it satisfies either of d × d level system R. Namiki and Y. Tokunaga, 2 qubits ( d =2) Phys. Rev. Lett. 108, 230503 (2012) 〈  Z B 〉  1 X A  X B   Z A  Discrete Fourier-based Uncertainty relations R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)

  11. Theorem. The state is entangled if it satisfies either of For d = 2,3 two conditions are equivalent. R. Namiki and Y. Tokunaga, For d 4 there are mutually exclusive subsets. ≧ Phys. Rev. Lett. 108, 230503 (2012) X: Verified to be entangled by the first condition 〇 . Y: Verified to be entangled by the first condition △ . ∣  l ,m 〉 =  l  m ∣  0,0 〉 X A Z B F  x  : Floor function

  12. Basic concepts on Quantum mechanics  p  2 V C : =∥[ x , p ]∥/ 2 4 ● Canonical uncertainty relation  x  2  p  2  C 2 3 Trade off 2 〈  2  x 〉〈  2  p 〉 ≥ 1 / 4 ∥[ x , p ]∥ 1 unphysical  x  2 4 U ● Quantum entanglement 0 1 2 3  AB ≠ ∑ i p i  Ai ⊗ Bi - Inseparability A B 〈 i ∣ j 〉 = i , j e.g. , ∣  〉 AB =∑ i a i ∣ i 〉 A ∣ i 〉 B - Entanglement measure M  AB ≥ M  L LOCC  AB 

  13. Theorem. Multi-level coherence  AB ≠ ∑ i p i ∣  i 〉〈  i ∣ k − 1 a i ∣ u i 〉 A ⊗ ∣ v i 〉 B ∣  i 〉 = ∑ i = 0  1 ≤ k ≤ d  ∣  〉 AB ∝ ∣ 0 〉 ∣ 0 〉  ∣ 1 〉 ∣ 1 〉  ∣ 2 〉 ∣ 2 〉  ..... Total correlations A B The state needs to include # of k+1 coherent superposition of the product states The figure k is called the Schmidt number which can quantify entanglement (entanglement monotone). For k = 1  AB ≠ ∑ i p i  Ai ⊗ Bi = ∑ i p i ' ∣  i 〉〈  i ∣ ⊗ ∣  i 〉〈  i ∣ R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012)

  14. Theorem. Multi-level coherence of Quantum Gates  ' = E ≠ ∑ i A i  A i †  k − 1  = 1 2  1  k F  F d  rank  A i ≤ k Description by less-than rank -k Input-output correlation Kraus operators is not admissible! F = 1 2 d ∑ i  〈 i ∣ E  ∣ i 〉〈 i ∣  ∣ i 〉  〈  i ∣ E  ∣  i 〉 〈  i ∣  ∣  i 〉  ∃ A i s.t. ,rank  A i  k Z-basis X-basis   ' E Trace-preserving Tr  ' = Tr = 1 Ideal unitary gates † E ideal = U  U † U = 1 U rank  U = d rank  A ≤ k General physical maps k − 1 a i ∣ u i 〉 A ⊗ ∣ v i 〉 B † A i = 1  ' = E = ∑ i A i  A i ∑ i A i  A A ∣  〉 ∝ ∑ i = 0 † Degrade Schmidt number Less-than k R. Namiki and Y. Tokunaga, Phys. Rev. A 85, 010305(R) (2012).

  15. Application for known experiments  ' = E ≠ ∑ i A i  A i †  k − 1  = 1 2  1  k F  F d  rank  A i ≤ k Input-output correlation (Average fidelity) F = 1 2 d ∑ i  〈 U i ∣ E  ∣ i 〉 〈 i ∣  ∣ U i 〉  〈 U  i 〉  i ∣ E  ∣  i 〉 〈  i ∣  ∣ U  A basic elements of quantum computer: CNOT gate Entanglement d = 4 Breaking F  = 1 k = 1 C-Not Gate Schmidt number k 2  F Z  F X  k = 2 (at least) k = 3 U C − NOT : ∣ i 〉  ∣ U i 〉 0.89 [24] 4 ∣ 0 〉 ∣ 0 〉  ∣ 0 〉 ∣ 0 〉  3  = 0.875 F ∣ 0 〉 ∣ 1 〉  ∣ 0 〉 ∣ 1 〉 3 0.86 [23] ∣ 1 〉 ∣ 0 〉  ∣ 1 〉 ∣ 1 〉  2  = 0.75 F ∣ 1 〉 ∣ 1 〉  ∣ 1 〉 ∣ 0 〉 2  1  = 0.625 F 0 〉 ∣  0 〉  ∣  0 〉 ∣  0 〉 ∣  ∣  0 〉 ∣  1 〉  ∣  1 〉 ∣  1 〉 ∣  1 〉 ∣  0 〉  ∣  1 〉 ∣  0 〉 ∣  1 〉 ∣ 1 〉  ∣  0 〉 ∣  1 〉

  16. Summary Role of Complementary on Entanglement detection Quantum entanglement & Uncertainty relations Simultaneous correlations on complementary observables → Inseparability of two-body density operators → Strength of quantum correlations X X Z Z →(Coherence of Quantum Gates) ● Two measurement settings ● Multi-dimensional entanglement A B →Detection of Non-Gaussian entanglement uncertainty relations based on SU(2) and SU(1,1) generators R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503 (2012). (R. Namiki and Y. Tokunaga, Phys. Rev. A 85, 010305(R) (2012). ) R. Namiki, Phys. Rev. A 85, 062307 (2012).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend