a tail feedback vco with self adjusting current
play

A Tail-feedback VCO with Self-Adjusting Current Modulation Scheme - PowerPoint PPT Presentation

A Tail-feedback VCO with Self-Adjusting Current Modulation Scheme Aravind Tharayil Narayanan, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada Lab. y


  1. A Tail-feedback VCO with Self-Adjusting Current Modulation Scheme Aravind Tharayil Narayanan, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada Lab. y y

  2. Contents u Motivation u High Efficiency VCOs u Reliable Power-Efficient Solutions u Startup issue in Tail-Feedback VCO u Proposed VCO u Tail-Bias Vs Class-C u Measurement Results u Conclusion 2

  3. Motivation 21.9% Others 9.1mW ref PD LPF VCO 32.5mW 76.1% Aim: N Low-power § VCO High-purity § Long lifetime § Ø Low-power VCO needed for longer battery-life [1] L. Vercesi, JSSC 2012. 3

  4. High Efficiency VCOs VDD VDD LDO VDD V P V N V P V N K M V gbias V P V N VDD M1 M2 M1 M2 M1 M2 V Tail V Tail C Tail C Tail M3 M3 Class-C Class-D Class-F High voltage efficiency High current efficiency [3] L. Fanori, JSSC 2013. [2] P. Andreani, JSSC 2008. [4] M. Babaie, JSSC 2013. 4

  5. High Efficiency VCOs – Contd. Excess Noise Factor 5 (ENF) u ENF = FoM MAX – FoM FoM MAX : Only depends on Q ENF : Only depends on topology 1 η I : Current efficiecny u ENF ∝ η I × η V η V : Voltage efficiecny ✗ High η V : § Loading effects § Reliability issues. ✓ High η I : § Good candidate for practical high efficiency VCO [5] M. Garampazzi, ESSCIRC 2014. 5

  6. Class-C VCO V P V N VDD V DD V P V N V G,M1 V Tune V TH V gbias V G,M2 t I M1 I M2 I M1 I M2 M1 M2 I ω 0 ≈ I Bias I Tail V Tail C Tail ϖ 2 ϖ 3 ϖ 4 ϖ 0 t M3 Ø Impulse-shaped current for high efficiency [2] A. Mazzanti and P. Andreani, JSSC 2008. 6

  7. Tail-Feedback VCO V P V N VDD V DD V P V N V G,M4 V TH V Tune V Tail V G,M3 t I M1 I M2 I M1 I M2 Φ C fb C fb M1 M2 I ω 0 ≈ I Bias V Tail V Tail ϖ 2 ϖ 3 ϖ 4 ϖ 0 t M3 M4 Ø High efficiency can be achieved if 𝚾 is small. [6] A. Musa, IEICE 2013. 7

  8. Startup Issue Ø Large oscillation amplitude for better phase noise Phase Noise Improvment (dB) V DS 5 V DD 4 V TH 3 V Tail V T,eff 2 t 1 I ω 0 ≈ I Bias 0 0 30 60 90 I DS Conduction Angle (degrees) t - ϖ ϖ 0 Ø VCO fails to startup at low tail-bias voltage. 8

  9. Proposed VCO VDD V Bias V P V N V Tune VDD C fb C fb VDD I M1 I M2 I B1 I B2 R b R b M1 M2 V b C b C b M5 M6 M3 M4 Bias Circuit 9

  10. Self-Adjusting Tail-Current Modulation Ø Ensures robust startup 10

  11. Self-Adjusting Tail-Current Modulation Ø Optimizes ‘ 𝚾 ’ for better phase noise 11

  12. Contents u Motivation u High Efficiency VCOs u Reliable Power-Efficient Solutions u Startup issue in Tail-Feedback VCO u Proposed VCO u Tail-Bias Vs Class-C u Measurement Results u Conclusion 12

  13. Efficiency and MOS Sizing in Class-C V DS ! !"# = ! !! − ( ! !" − ! !" ) V DD ! V TH -100 V GS Phase Noise [dBc/Hz] I max1 -105 −Φ 1 Φ 1 I DS1 Small MOS -110 I max2 −Φ 2 −Φ 2 -115 I DS2 -0.3 0.0 0.3 0.6 - ϖ - ϖ 0 ϖ ϖ 2 Large MOS 2 V gbias [V] Ø Large MOS required for better efficiency (class-C) [2] A. Mazzanti and P. Andreani, JSSC 2008. 13

  14. Tail Noise Factor: Fixed Tail Bias V Tail i DS +i N V TH 0 i N ISF V Tail I DS Noise ϖ 2 ϖ 3 ϖ 4 ϖ Fixed Tail Bias 0 Ø Continuous Tail-Noise Up-Conversion in Class-C [7] S.L.J. Geirkink, JSSC 1999. 14

  15. Tail Noise Factor: Modulated Tail Bias V T,eff i DS +i N V TH V T,eff =(V Tail +V mod ) V Tail i N V mod ISF V Tail I DS Noise ϖ 2 ϖ 3 ϖ 4 ϖ Modulated Tail Bias 0 Ø Reduced Tail-Noise Up-Conversion [7] S.L.J. Geirkink, JSSC 1999. 15

  16. In Brief Tail-feedback VCO compared to class-C VCO Ø Better tuning range. Ø Similar if not better noise performance. Ø Start-up issue is solvable. 16

  17. Contents u Motivation u High Efficiency VCOs u Reliable Power-Efficient Solutions u Startup issue in Tail-Feedback VCO u Proposed VCO u Tail-Bias Vs Class-C u Measurement Results u Conclusion 17

  18. Measurement Technology 180nm CMOS F OSC 4.6GHz 530 𝛎 M PN@1MHz -119dBc/Hz Power 6.8mW FoM -184dBc/Hz 245 𝛎 M 18

  19. Measurement -20 -40 Phase noise (dBc/Hz) -60 -80 -100 -120 -140 1K 10K 100K 1M 10M Offset Frequency (Hz) 19

  20. Conclusion u VCO topologies for high-efficiency is briefly analyzed. u Current-efficient topology is identified as a viable candidate for practical design. u Tail-feedback VCO is capable of achieving similar if not better performance compared to class-C VCO. u The start-up issues present in tail-feedback VCO is briefly discussed. u A bias mechanism is presented for solving startup issues. u A VCO is implemented in 180nm CMOS process incorporating the proposed bias scheme. 20

  21. APPENDIX 21

  22. Analysis: Class-C VCO VDD VDD VP C L L C Cgs,m1 Cgd,m1 L C Cgd,m1 Cdc VP M1 Cgd,m3 Cgs,m1 C L Cgs,m3 CT Cgd,m3 M3 M3 VTail C T Cgs,m3 Conventioanl Class-C equivalent circuit Ø C GS has prominent effect on tank impedance 22

  23. Analysis: Tail-Feedback VCO VDD VDD VP C L L C Cgd,m1 L C Cfb Cgs,m1 Cgd,m1 Cgd,m3 VP M1 Cgs,m1 Cfb C L Cgd,m3 Cgs,m3 VTail M3 Cgs,m3 Tail bias equivalent circuit Ø Cross-couple size is independent of ‘ 𝚾 ’ 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend