a synthetic synchrotron diagnostic for runaways in
play

A synthetic synchrotron diagnostic for runaways in tokamaks Mathias - PowerPoint PPT Presentation

A synthetic synchrotron diagnostic for runaways in tokamaks Mathias Hoppe 1 Ola Embrus 1 , Alex Tinguely 2 , Robert Granetz 2 , Adam Stahl 1 , Tnde Flp 1 1 Chalmers University of Technology, Gothenburg, Sweden 2 PSFC, Massachusetts


  1. A synthetic synchrotron diagnostic for runaways in tokamaks Mathias Hoppe 1 Ola Embréus 1 , Alex Tinguely 2 , Robert Granetz 2 , Adam Stahl 1 , Tünde Fülöp 1 1 Chalmers University of Technology, Gothenburg, Sweden 2 PSFC, Massachusetts Institute of Technology, Cambridge, Massachusetts

  2. CHALMERS 2/ 17 Outline 1. Theory of our synthetic diagnostic 2. Geometric effects 3. Image sensitivity to RE parameters 4. Modelling C-Mod discharge

  3. CHALMERS 3/ 17 Synthetic synchrotron diagnostic theory Total power per pixel, per frequency interval d ω : � � � d I ij d ω ( x 0 , ω ) = d x d p d A d n × A N ij � d 2 P ( x , p , x 0 , ω ) × ˆ n · n � r r 2 f ( x , p ) δ r − n d ω d Ω Detector parameters A = Detector surface, d 2 P / d ω d Ω = Angular and spectral n = Line-of-sight distribution of synchrotron radiation, ˆ n = Viewing direction x 0 = Detector position f ( x , p ) = Distribution of runaways, Particle parameters r = | x − x 0 | = Distance between camera and particle.

  4. CHALMERS 4/ 17 Synthetic synchrotron diagnostic theory Three transformations 1. Guiding-center approx., d x d p ≈ d X d p � d p ⊥ d ζ x X Larmor radius ≪ B/ |∇ B |

  5. CHALMERS 4/ 17 Synthetic synchrotron diagnostic theory Three transformations 1. Guiding-center approx., d x d p ≈ d X d p � d p ⊥ d ζ 2. Cylindrical coordinates, z d X = R d R d z d φ R φ

  6. CHALMERS 4/ 17 Synthetic synchrotron diagnostic theory Three transformations 1. Guiding-center approx., d x d p ≈ d X d p � d p ⊥ d ζ τ 2. Cylindrical coordinates, d X = R d R d z d φ 3. Trajectory coordinates ρ ( R , z ) → ( ρ, τ ) , φ ◮ ρ : Major radius of particle in the midplane, at beginning of orbit ◮ τ : Orbit time (a poloidal parameter)

  7. CHALMERS 5/ 17 Synthetic synchrotron diagnostic theory Distribution function independent of: � Toroidal angle φ – Tokamak axisymmetry � Gyrophase ζ – Gyrotropy � Orbit time τ – Liouville’s theorem Guiding-center distribution specified along the line τ = φ = 0 (outer midplane). d I ij � � � d ω = d ρ d τ d φ d p � d p ⊥ × p ⊥ JR × d A d n A N ij � � � d 2 P ( ρ, p � , p ⊥ , x 0 , ω ) × ˆ n · n � r r 2 f gc ( ρ, p � , p ⊥ ) δ r − n d ω d Ω

  8. CHALMERS 6/ 17 Synchrotron radiation Angular and spectral distribution of synchrotron radiation: � ω � 2 � 1 − β cos ψ � 2 d ω d Ω = 3 e 2 β 2 γ 6 ω B d 2 P × 32 π 3 ǫ 0 c ω c β cos ψ 2 / 3 ( ξ ) + ( β/ 2 ) cos ψ sin 2 ψ � � K 2 K 2 × 1 / 3 ( ξ ) 1 − β cos ψ Result of gyro-average:

  9. CHALMERS 7/ 17 SOFT – Sychrotron-detecting Orbit Following Toolkit Computes d I ij / d ω , and outputs � synchrotron images and spectra

  10. CHALMERS 7/ 17 SOFT – Sychrotron-detecting Orbit Following Toolkit Computes d I ij / d ω , and outputs � synchrotron images and spectra � Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry

  11. CHALMERS 7/ 17 SOFT – Sychrotron-detecting Orbit Following Toolkit Computes d I ij / d ω , and outputs � synchrotron images and spectra � Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry � Weighted with a given (numeric) runaway distribution function

  12. CHALMERS 7/ 17 SOFT – Sychrotron-detecting Orbit Following Toolkit Computes d I ij / d ω , and outputs � synchrotron images and spectra � Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry � Weighted with a given (numeric) runaway distribution function � Full distribution runs in 5-10 hours on 4-core Xeon-based desktop, with sufficient resolution

  13. CHALMERS 8/ 17 Comparison with SYRUP [1] � Geometric effects (SOFT) show significant difference in spectrum. � Runaway distribution specified explicitly in outer-midplane (LF-side). � Contributions mostly from HF-side. [1] A. Stahl, et. al. PoP 20, 093302 (2013).

  14. CHALMERS 9/ 17 Parameter scans Magnetic geometry: Alcator C-Mod, 3-8 T � Radiation in the visible range � Camera located 21 cm below midplane Varied parameters: � Energy E Pitch angle θ p � � Initial radius

  15. CHALMERS 10/ 17 Parameter scans – Energy E = 10 MeV E = 25 MeV 100% 80% 60% E = 40 MeV E = 55 MeV 40% Other parameters: Beam radius 16 cm Pitch angle 0 . 15 rad 20% Spectral range 500-1000 nm Magnetic field 3-8 T 0% Camera elevation − 21 cm

  16. CHALMERS 11/ 17 Parameter scans – Pitch angle θ p = 0 . 02 rad θ p = 0 . 10 rad 100% 80% Other parameters: Beam radius 16 cm 60% Energy 30 MeV Spectral range 500-1000 nm θ p = 0 . 18 rad θ p = 0 . 26 rad 40% Magnetic field 3-8 T Camera elevation − 21 cm 20% 0%

  17. CHALMERS 12/ 17 Small pitch angle = small GC Large pitch angle = large GC cone cone = ⇒ small chance of reaching = ⇒ greater chance of reaching detector detector θ p = 0 . 02 rad θ p = 0 . 18 rad

  18. CHALMERS 13/ 17 Parameter scans – Launch radius Other parameters: Beam radius 16 cm Energy 30 MeV Pitch angle 0 . 15 rad 72 cm Spectral range 500-1000 nm 74 cm Magnetic field 3-8 T 76 cm 78 cm Camera elevation − 21 cm 80 cm 82 cm NOTE: Magnetic axis at R = 68 cm . 84 cm Particles at R � 72 cm are invisible in this configuration.

  19. CHALMERS 14/ 17 Distribution function − → � Simulated with CODE [2, 3] � Parameters given on-axis [2] M. Landreman, et. al. CPC 185, 847 (2014). [3] A. Stahl, et. al. NF 56, 112009 (2016).

  20. CHALMERS 15/ 17 Distribution function

  21. CHALMERS 16/ 17 What do we actually see? f ( p � , p ⊥ ) (Distribution function) “ ˆ I × f ( p � , p ⊥ ) ” (Emitted radiation)

  22. CHALMERS 17/ 17 Conclusions � SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations

  23. CHALMERS 17/ 17 Conclusions � SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations � Pitch angle varies along orbit = ⇒ crucial to be clear about how the runaway distribution is specified.

  24. CHALMERS 17/ 17 Conclusions � SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations � Pitch angle varies along orbit = ⇒ crucial to be clear about how the runaway distribution is specified. � Detector placement strongly influences the observed synchrotron radiation.

  25. CHALMERS 17/ 17 Conclusions � SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations � Pitch angle varies along orbit = ⇒ crucial to be clear about how the runaway distribution is specified. � Detector placement strongly influences the observed synchrotron radiation. � Sensitivity due to runaway properties helps inferring runaway distribution from image.

  26. E XTRA SLIDE S

  27. CHALMERS 19/ 17

  28. CHALMERS 20/ 17 Parameter scans – Camera vertical position z = − 21 cm z = − 14 cm 100% 80% Other parameters: Beam radius 16 cm 60% Energy 30 MeV 0 . 15 rad Pitch angle z = − 7 cm z = 0 cm 40% Spectral range 500-1000 nm Magnetic field 3-8 T 20% 0%

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend