time dependence of agn pair echo and halo
play

Time dependence of AGN pair echo, and halo emission as a probe of - PowerPoint PPT Presentation

Time dependence of AGN pair echo, and halo emission as a probe of extragalactic magnetic fields FO, Murase & Kotera, 2017, in prep FO, Murase & Kotera, PoS(ICRC2017)869 FO, Murase & Kotera, A&A 568, A110 (2014) ICRC2017 Foteini


  1. Time dependence of AGN pair echo, and halo emission as a probe of extragalactic magnetic fields FO, Murase & Kotera, 2017, in prep FO, Murase & Kotera, PoS(ICRC2017)869 FO, Murase & Kotera, A&A 568, A110 (2014) ICRC2017 Foteini Oikonomou - Penn State Busan-19 July 2017 1

  2. Introduction/Motivation B in structured region TeV emitting blazar B in voids 2

  3. Introduction/Motivation B in structured region TeV emitting blazar B in voids Emission scenarios: leptonic hadronic 2

  4. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  5. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  6. Introduction/Motivation B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 2

  7. Blazar gamma-ray emission E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV Costamante, 2012 3

  8. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 Fermi H.E.S.S. 10 2 E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 0 10 -1 1ES 1101-232, z = 0.18 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV 4

  9. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 Fermi Fermi H.E.S.S. H.E.S.S. 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 0 10 0 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV 4

  10. Inverse-Compton echo E ≲ 260 GeV γ EBL e + e - x x x x γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs H.E.S.S. H.E.S.S. 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 1 10 0 10 0 10 0 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 8 10 8 10 9 10 9 10 10 10 10 10 11 10 11 10 12 10 12 10 13 10 13 10 14 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV energy/eV 4

  11. Inverse-Compton echo E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs ∆ T =1000000 yrs H.E.S.S. H.E.S.S. B = 10 -15 G, θ V =0 ° 10 2 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] 10 1 10 1 10 1 10 1 10 0 10 0 10 0 10 0 10 -1 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 -2 10 8 10 8 10 8 10 9 10 9 10 9 10 10 10 10 10 10 10 11 10 11 10 11 10 12 10 12 10 12 10 13 10 13 10 13 10 14 10 14 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV energy/eV energy/eV 4

  12. Inverse-Compton echo E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV FO, Murase & Kotera PoS(ICRC2017)869 10 3 10 3 10 3 10 3 10 3 B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° B = 10 -16 G, θ V =0 ° Fermi Fermi ∆ T =1000000 yrs ∆ T =1000000 yrs ∆ T =1000000 yrs H.E.S.S. H.E.S.S. B = 10 -15 G, θ V =0 ° B = 10 -15 G, θ V =0 ° 10 2 10 2 10 2 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] B = 10 -14 G, θ V =0 ° 10 1 10 1 10 1 10 1 10 1 10 0 10 0 10 0 10 0 10 0 10 -1 10 -1 10 -1 10 -1 10 -1 1ES 1101-232, z = 0.18 10 -2 10 -2 10 -2 10 -2 10 -2 10 8 10 8 10 8 10 9 10 9 10 9 10 10 10 10 10 10 10 11 10 11 10 11 10 12 10 12 10 12 10 13 10 13 10 13 10 14 10 14 10 14 10 8 10 8 10 9 10 9 10 10 10 10 10 11 10 11 10 12 10 12 10 13 10 13 10 14 10 14 energy/eV energy/eV energy/eV energy/eV energy/eV 4

  13. Inverse-Compton Echo-Transient FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] E ≲ 260 GeV E ≲ 260 GeV γ EBL γ EBL e + e - e + e - x x x x x x γ >GeV γ >GeV 10 3 10 3 steady transient B = 10 -16 G, θ V =0 ° B = 10 -18 G, θ V =0 ° ∆ T =1000000 yrs ∆ T =10 yrs B = 10 -15 G, θ V =0 ° B = 10 -17 G, θ V =0 ° 10 2 10 2 E 2 dN/dE [eV cm -2 s -1 ] E 2 dN/dE [eV cm -2 s -1 ] B = 10 -14 G, θ V =0 ° B = 10 -16 G, θ V =0 ° 10 1 10 1 10 0 10 0 10 -1 10 -1 10 -2 10 -2 10 8 10 9 10 10 10 11 10 12 10 13 10 14 10 8 10 9 10 10 10 11 10 12 10 13 10 14 energy/eV energy/eV 5

  14. Inverse-Compton pair halo emission Neronov & Semikoz 2009 Fermi PSF 10 4 E =10.0-100.0 GeV ∆ T =1000000.0 yrs 1ES 1101-232, z = 0.18 dN/d θ 2 [deg -2 ] 10 2 10 0 B = 10 -15.0 G B = 10 -16.0 G PRELIMINARY B = 10 -17.0 G 10 -2 0 0.1 0.2 0.3 0.4 0.5 θ 2 [deg 2 ] 6

  15. Inverse-Compton pair halo emission Neronov & Semikoz 2009 Fermi PSF 10 4 10 4 B = 10 -17.0 G E =10.0-100.0 GeV E =10.0-100.0 GeV ∆ T =1000000.0 yrs 1ES 1101-232, z = 0.18 dN/d θ 2 [deg -2 ] dN/d θ 2 [deg -2 ] 10 2 10 2 t =100.0 yrs t =10000.0 yrs t =1000000.0 yrs 10 0 10 0 B = 10 -15.0 G B = 10 -16.0 G PRELIMINARY B = 10 -17.0 G 10 -2 10 -2 0 0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 θ 2 [deg 2 ] θ 2 [deg 2 ] 6

  16. Formalism FO, Murase, Kotera, PoS(ICRC 2017) 869 Blumenthal & Gould 1970 d N d N d ε d n d ε ⟨ d σ KN � � d E d t = d γ e dE c (1 − µ ) ⟩ d γ e Fast implementation for Fermi Analysis Redshift energy losses Parameter surveys Benchmark with Monte Carlo (ELMAG) Exact geometry Off-axis formalism Full Klein-Nishina cross-section *see also Neronov & Vovk 2010, Taylor et al 2011, Dermer et al. 2011, Murase et al. 2012, Ichiki et al. 2010, 7 Dolag et al. 2011, Huan et al. 2011

  17. B in structured region TeV emitting blazar B in voids Inverse Compton Emission scenarios: leptonic Synchrotron hadronic 8

  18. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc Tavecchio 2014 deabsorbed 9 9

  19. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc ◆ 2 ✓ ◆ ✓ B E e Guaranteed when λ syn < λ IC E γ , syn ∼ 68 GeV 10 19 eV 10 nG FO, Murase & Kotera, A&A 568, A110 (2014) 0.1 nG 2 10 B = 6nG Example 1ES 0229+200 Mean free path (Mpc) E 2 dN/dE [eV s − 1 cm − 2 ] B = 16nG 1 nG (L CR,ISO = 10 46.5 erg s -1 ) B = 100nG λ Inv. Compton 1 10 B = 316nG HESS 10 nG VERITAS λ synchrotron Fermi/LAT 0 10 9 − 1 10 − 2 10 E (eV) 8 9 10 11 12 13 14 10 10 10 10 10 10 10 9 E [eV]

  20. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions Gabici, Aharonian 2005,7 λ syn < λ IC Kotera, Allard, Lemoine 2011 FO, Murase, Kotera 2014 prompt synchrotron γ -rays e + e - UHECRs x x filament/galaxy cluster B > nG typically ~few Mpc ◆ 2 ✓ ◆ ✓ B E e Guaranteed when λ syn < λ IC E γ , syn ∼ 68 GeV 10 19 eV 10 nG FO, Murase & Kotera, A&A 568, A110 (2014) 0.1 nG 2 10 B = 6nG Example 1ES 0229+200 Mean free path (Mpc) E 2 dN/dE [eV s − 1 cm − 2 ] B = 16nG 1 nG (L CR,ISO = 10 46.5 erg s -1 ) B = 100nG λ Inv. Compton 1 10 B = 316nG HESS 10 nG VERITAS λ synchrotron Fermi/LAT 0 10 9 − 1 10 − 2 10 E (eV) 8 9 10 11 12 13 14 10 10 10 10 10 10 10 9 E [eV]

  21. Summary/Outlook New analytical formalism to constrain EGMF strength with blazar pair-echoes/halos Developed for time-dependent pair-echo and pair-halo emission (transient sources) Treatment of off-axis emission (important for radio galaxies) Important for Fermi-LAT parameter surveys Synchrotron emission by UHECRs can explain hard-spectrum ultra-high energy peaked blazars (UHBLs) and probes MF strength in structured regions 10

  22. UHECR induced synchrotron pair echo/halo *sensitive to EGMFs in structured regions GeV cm − 2 s − 1 Kotera et al. 2011 assuming CTA at 10 GeV: ~ 10 -10 GeV cm -2 s -1 ( θ source /1°) Fermi 10 yrs D = 100 Mpc 
 at level of total CR flux * + flux integrated up to D = 1 Gpc 
 B = 1 nG angular extension θ D = 1 Gpc 
 E γ = 1 − 100 GeV 10% of total CR flux L CR,19 = 10 46 erg s − 1 Kotera et al. 2011 11

  23. FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] Back-up: UHECRs vs. UHE neutrals *sensitive to EGMFs in structured regions UHECR x x Murase 2009,12 Dermer et al. x x UHE photons (protons confined) 12 12

  24. FO, Murase & Kotera, 2017 [PoS(ICRC2017)869] Back-up: UHECRs vs. UHE neutrals *sensitive to EGMFs in structured regions UHECR x x Murase 2009,12 Dermer et al. x x UHE photons (protons confined) UHECR, B =100 nG 3 10 UHECR, B = 316 nG 1ES 0229+200 spectra not E 2 dN/dE [eV s − 1 cm − 2 ] UHE � , B=100 nG 2 10 UHE � , B = 316 nG distinguishable! HESS 1 10 VERITAS Fermi/LAT 0 10 − 1 10 UHE photons B 3 Mpc = 316 nG − 2 10 α = 2, E γ , ΜΑΧ = 10 19.5 eV L CR,j ~ 10 45 erg s -1 − 3 10 8 9 10 11 12 13 14 12 12 10 10 10 10 10 10 10 E [eV]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend