a review of hybrid high order methods formulations
play

A review of Hybrid High-Order methods: formulations, computational - PowerPoint PPT Presentation

A review of Hybrid High-Order methods: formulations, computational aspects, links with other methods Daniele A. Di Pietro, Alexandre Ern, Simon Lemaire https://sites.google.com/site/chezsimonlemaire cole des Ponts ParisTech CERMICS


  1. A review of Hybrid High-Order methods: formulations, computational aspects, links with other methods Daniele A. Di Pietro, Alexandre Ern, Simon Lemaire https://sites.google.com/site/chezsimonlemaire École des Ponts ParisTech – CERMICS Laboratory POEMs Workshop, Georgia Tech, USA October 28, 2015

  2. Outline Literature review Setting The HHO method in primal form Links HHO/other polytopal discretization methods The HHO method in mixed form Conclusion

  3. Outline Literature review Setting The HHO method in primal form Links HHO/other polytopal discretization methods The HHO method in mixed form Conclusion

  4. Lowest-order polytopal discretization methods Finite Volume methods ‚ Mixed/Hybrid Finite Volume (M/HFV) [Droniou and Eymard, 06 + Eymard, Gallouët, and Herbin, 10] Mimetic/Compatible methods ‚ Mimetic Finite Difference (MFD) [Brezzi, Lipnikov, and Shashkov, 05 + Beirão da Veiga, Lipnikov, and Manzini, 14] � equivalence with M/HFV [Droniou, Eymard, Gallouët, and Herbin, 10] ‚ Discrete Geometric Approach (DGA) [Codecasa, Specogna, and Trevisan, 10] ‚ Compatible Discrete Operator (CDO) [Bonelle and Ern, 14] Non-conforming/penalized methods ‚ Cell-Centered Galerkin (CCG) [Di Pietro, 12] ‚ Generalized Crouzeix–Raviart [Di Pietro and Lemaire, 15] Unifying frameworks ‚ Gradient Schemes [Droniou, Eymard, Gallouët, and Herbin, 13] ‚ CDO

  5. High-order polytopal discretization methods Finite Element (FE) methods [Wachspress, 75 + Tabarraei and Sukumar, 04 + Gillette, Rand, and Bajaj] Virtual Element (VE) methods ‚ Conf. VE [Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, and Russo, 13] ‚ Non-conf. VE [Ayuso de Dios, Lipnikov, and Manzini] ‚ Unified framework [Cangiani, Manzini, and Sutton] Discontinuous Galerkin (DG) methods [Arnold, Brezzi, Cockburn, and Marini, 02 + Di Pietro and Ern, 12 + Bassi, Botti, Colombo, Di Pietro, and Tesini, 12 + Antonietti, Giani, and Houston, 13] Hybridizable DG (HDG) methods [Cockburn, Gopalakrishnan, and Lazarov, 09] Weak Galerkin (WG) methods [Wang and Ye, 13] Hybrid High-Order (HHO) methods [Di Pietro, Ern, and Lemaire, 14]

  6. Outline Literature review Setting The HHO method in primal form Links HHO/other polytopal discretization methods The HHO method in mixed form Conclusion

  7. Model problem Let Ω Ă R d , d ě 2 , be an open, connected, bounded polytopal domain. Problem: Find a potential u : Ω Ñ R such that ✎ ☞ ´ div p M ∇ u q “ f in Ω (1) u “ 0 on B Ω ✍ ✌ � f P L 2 p Ω q , M symmetric, piecewise Lipschitz, matrix-valued coeff. s.t. for a.e. x P Ω , and all ξ P R d s.t. | ξ | “ 1 , 0 ă µ 5 ď M p x q ξ ¨ ξ ď µ 7 ă `8

  8. Admissible mesh sequences Definition The mesh sequence p T h q h P H is admissible if, for all h P H , T h is a finite collection of polygons/polyhedra T s.t. Ω “ Ť T P T h T , and T h admits a matching simplicial submesh T h such that p T h q h P H is ‚ shape-regular in the usual sense of Ciarlet; ‚ contact-regular: every simplex S Ď T is s.t. h S « h T . ‰ d ˆ d “ P 0 � Assumption: M P d p T h q sym @ h P H , and @ T P T h , M T : “ M | T is s.t. µ 5 ,T ď M T ξ ¨ ξ ď µ 7 ,T (local anisotropy ratio: ρ T : “ µ 7 ,T { µ 5 ,T q Figure : Admissible meshes in 2D

  9. Outline Literature review Setting The HHO method in primal form Links HHO/other polytopal discretization methods The HHO method in mixed form Conclusion

  10. HHO in primal form ‚ Di Pietro, D. A. and Ern, A., A Hybrid High-Order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg., 283:1–21, 2015. ‚ Di Pietro, D. A., Ern, A., and Lemaire, S., An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Meth. Appl. Math., 14(4):461–472, 2014. ‚ Di Pietro, D. A. and Ern, A., Hybrid High-Order methods for variable-diffusion problems on general meshes, C. R. Acad. Sci. Paris, Ser. I, 353:31–34, 2015.

  11. Discrete unknowns ( k ě 0 ) k “ 0 k “ 1 k “ 2 ‚ ‚‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚‚ ‚‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚‚ ‚‚ ‚ ‚ ‚ ‚‚ ‚ ‚ ‚ Figure : DoFs associated with potential unknowns, d “ 2 Local hybrid set of potential unknowns ✎ ☞ # ą + U k P k T : “ P k d p T q ˆ d ´ 1 p F q F P F T ✍ ✌ Local reduction operator ´ ¯ I k T : H 1 p T q Ñ U k I k Π k T v, p Π k T s.t., for all v P H 1 p T q , T v : “ F v q F P F T

  12. Potential reconstruction operator Local potential reconstruction operator: p k ` 1 : U k T Ñ P k ` 1 p T q T d For v T “ p v T , v F T q P U k T , p k ` 1 v T P P k ` 1 T p k ` 1 ş ş p T q is s.t. v T “ T v T T d T and satisfies, for all w P P k ` 1 p T q , d ✎ ☞ p M T ∇ p k ` 1 ÿ v T , ∇ w q T “ ´p v T , div p M T ∇ w qq T ` p v F , M T ∇ w ¨ n T,F q F T F P F T ✍ ✌ � diffusivity included in reconstruction operator Computation Requires to invert a SPD matrix of size N p k ` 1 q ,d with N k,l : “ dim p P k l q Approximation For all v P H k ` 2 p T q , the following holds: 1 { 2 } v ´ p k ` 1 I k T v } T ` h T } ∇ p v ´ p k ` 1 I k T h k ` 2 T v q} T À ρ } v } k ` 2 ,T T T T

  13. Stabilization ✞ ☎ a T p u T , v T q : “ p M T ∇ p k ` 1 u T , ∇ p k ` 1 v T q T ` j T p u T , v T q ✝ T T ✆ Local stabilization bilinear form: j T : U k T ˆ U k T Ñ R For all u T , v T P U k T , µ T,F ÿ p Π k F p q k ` 1 u T ´ u F q , Π k F p q k ` 1 j T p u T , v T q : “ v T ´ v F qq F , T T h F F P F T where µ T,F : “ M T n F ¨ n F , and q k ` 1 w T : “ w T ` p p k ` 1 T p k ` 1 w T ´ Π k w T q T T T � the use of Π k F is reminiscent of Lehrenfeld-Schöberl stabilization for HDG [Lehrenfeld, 10] � the operator q k ` 1 is new and opens the door to lower-order cell unknowns T Approximation For all v P H k ` 2 p T q , the following bound holds: 1 { 2 À µ 1 { 2 1 { 2 j T p I k T v, I k T h k ` 1 T v q 7 ,T ρ } v } k ` 2 ,T T

  14. Discrete problem Global hybrid set of potential unknowns ✞ ☎ U k h : “ P k d p T h q ˆ P k d ´ 1 p F h q ✝ ✆ Discrete problem Find u h P U k h, 0 s.t. v h P U k a h p u h , v h q “ p f, v T h q for all h, 0 with a h p u h , v h q : “ ř T P T h a T p u T , v T q Stability µ T,F 2 1 { 2 ρ ´ 1 T ` ρ ´ 1 ÿ } v T ´ v F } 2 T } M T ∇ v T } F À a T p v T , v T q T h F F P F T

  15. Error estimates Theorem (Energy-norm error estimate) Assume u P U 0 X H k ` 2 p T h q . Then, + 1 { 2 # ÿ T h 2 p k ` 1 q 1 { 2 p ∇ u ´ ∇ h p k ` 1 } u } 2 µ 7 ,T ρ 2 } M T h u h q} À k ` 2 ,T T T P T h Theorem ( L 2 -norm error estimate) Assume elliptic regularity under the form } z p g q} 2 , T h À µ ´ 1 5 } g } . Assume f P H k ` δ p Ω q , with δ “ 0 for k ě 1 and δ “ 1 for k “ 0 . Then, + 1 { 2 # ÿ 1 { 2 T h 2 p k ` 1 q µ 5 } Π k } u } 2 ` h k ` 2 } f } k ` δ µ 7 ,T ρ 2 T h u ´ u T h } À µ 7 ρ h T k ` 2 ,T T P T h

  16. Local conservativity 1 - Introduce the local bilinear form µ T,F a T p w T , v T q : “ p M T ∇ p k ` 1 w T , ∇ p k ` 1 ÿ ˆ v T q T ` p w T ´ w F , v T ´ v F q F T T h F F P F T T : U k T Ñ U k 2 - Define the local isomorphism c k T s.t. a T p c k @ v T P U k ˆ T w T , v T q “ ˆ a T p w T , v T q ` j T p w T , v T q T 3 - Define the local gradient recons. operator G k ` 1 : “ ∇ p p k ` 1 ˝ c k T q T T Lemma For all T P T h , the following local equilibrium holds: p M T G k ` 1 ÿ @ v T P P k u T , ∇ v T q T ´ p Φ T,F p u T q , v T q F “ p f, v T q T d p T q T F P F T with conservative numerical flux u T ¨ n T,F ´ µ T,F Φ T,F p u T q : “ M T G k ` 1 “ p c k T u T ´ u T q ´ p c k ‰ F u T ´ u F q T h F

  17. Solution strategy Offline step � 2 fully parallelizable and f -independent substeps ‚ 1 - Compute the potential reconstruction operator p k ` 1 T h � invert card p T h q SPD matrices of size N p k ` 1 q ,d ‚ 2 - For all T P T h , compute the trace-based t k T : P k d ´ 1 p F T q Ñ P k d p T q and datum-based d k T : P k d p T q Ñ P k d p T q lifting operators s.t. t k T w F T P P k a T pp t k T w F T , 0 q , p v T , 0 qq “ ´ a T pp 0 , w F T q , p v T , 0 qq @ v T P P k d p T q solves d p T q d k T Ψ T P P k a T pp d k T Ψ T , 0 q , p v T , 0 qq “ p Ψ T , v T q T @ v T P P k d p T q solves d p T q � invert card p T h q SPD matrices of size N k,d Online step ‚ 1 - Given f P L 2 p Ω q , compute its L 2 -orthogonal projection Π k T h f onto P k d p T h q ‚ 2 - Solve the global problem: Find u F h P P k d ´ 1 , 0 p F h q s.t. a h p t k h u F h , t k h v F h q “ p Π k T h f, t k @ v F h P P k T h v F h q d ´ 1 , 0 p F h q where t k h w F h : “ p t k T h w F h , w F h q � solve a linear system of size « card p F h q ˆ N k, p d ´ 1 q ‚ 3 - Compute the discrete solution according to u h “ p t k T h u F h ` d k T h Π k T h f, u F h q

  18. Outline Literature review Setting The HHO method in primal form Links HHO/other polytopal discretization methods The HHO method in mixed form Conclusion

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend